Suppr超能文献

顺应性厚升支中的信号转导

Signal transduction in a compliant thick ascending limb.

机构信息

Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.

出版信息

Am J Physiol Renal Physiol. 2012 May 1;302(9):F1188-202. doi: 10.1152/ajprenal.00732.2010. Epub 2012 Jan 18.

Abstract

In several previous studies, we used a mathematical model of the thick ascending limb (TAL) to investigate nonlinearities in the tubuloglomerular feedback (TGF) loop. That model, which represents the TAL as a rigid tube, predicts that TGF signal transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to constant intratubular fluid flow, the time interval required for an element of tubular fluid to traverse the TAL, as a function of time, is oscillatory and periodic but not sinusoidal. As a consequence, NaCl concentration in tubular fluid alongside the macula densa will be nonsinusoidal and thus contain harmonics of the original sinusoidal frequency. We hypothesized that the complexity found in power spectra based on in vivo time series of key TGF variables arises in part from those harmonics and that nonlinearities in TGF-mediated oscillations may result in increased NaCl delivery to the distal nephron. To investigate the possibility that a more realistic model of the TAL would damp the harmonics, we have conducted new studies in a model TAL that has compliant walls and thus a tubular radius that depends on transmural pressure. These studies predict that compliant TAL walls do not damp, but instead intensify, the harmonics. In addition, our results predict that mean TAL flow strongly influences the shape of the NaCl concentration waveform at the macula densa. This is a consequence of the inverse relationship between flow speed and transit time, which produces asymmetry between up- and downslopes of the oscillation, and the nonlinearity of TAL NaCl absorption at low flow rates, which broadens the trough of the oscillation relative to the peak. The dependence of waveform shape on mean TAL flow may be the source of the variable degree of distortion, relative to a sine wave, seen in experimental recordings of TGF-mediated oscillations.

摘要

在之前的几项研究中,我们使用厚升支(TAL)的数学模型来研究管球反馈(TGF)回路中的非线性。该模型将 TAL 表示为刚性管,预测 TAL 的 TGF 信号转导是产生非线性的因素:如果在恒定的管内液流中加入正弦振荡,则管状液流中的一个元素穿过 TAL 的时间间隔作为时间的函数是振荡和周期性的,但不是正弦的。因此,致密斑附近的管状液中的 NaCl 浓度是非正弦的,因此包含原始正弦频率的谐波。我们假设,基于体内 TGF 关键变量的时间序列的功率谱中发现的复杂性部分源于这些谐波,并且 TGF 介导的振荡中的非线性可能导致 NaCl 向远曲小管的输送增加。为了研究更现实的 TAL 模型是否会抑制谐波的可能性,我们在具有顺应性壁的模型 TAL 中进行了新的研究,从而使管腔半径取决于跨壁压力。这些研究预测顺应性 TAL 壁不会抑制,但会增强谐波。此外,我们的结果预测,TAL 平均流量强烈影响致密斑处 NaCl 浓度波形的形状。这是流速与通过时间之间的反比关系的结果,该关系产生了振荡的上升和下降斜率之间的不对称性,以及低流速下 TAL NaCl 吸收的非线性,这使得振荡的波谷相对于峰值变宽。波形形状对 TAL 平均流量的依赖性可能是 TGF 介导的振荡实验记录中所见的相对于正弦波的变形程度变化的来源。

相似文献

1
Signal transduction in a compliant thick ascending limb.
Am J Physiol Renal Physiol. 2012 May 1;302(9):F1188-202. doi: 10.1152/ajprenal.00732.2010. Epub 2012 Jan 18.
2
Signal transduction in a compliant short loop of Henle.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):369-83. doi: 10.1002/cnm.1475. Epub 2011 Oct 26.
3
Tubuloglomerular feedback signal transduction in a short loop of henle.
Bull Math Biol. 2010 Jan;72(1):34-62. doi: 10.1007/s11538-009-9436-4. Epub 2009 Aug 6.
4
Nonlinear filter properties of the thick ascending limb.
Am J Physiol. 1997 Oct;273(4):F625-34. doi: 10.1152/ajprenal.1997.273.4.F625.
5
Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop.
Math Biosci. 2007 Oct;209(2):564-92. doi: 10.1016/j.mbs.2007.03.007. Epub 2007 Mar 27.
6
Feedback-mediated dynamics in a model of a compliant thick ascending limb.
Math Biosci. 2010 Dec;228(2):185-94. doi: 10.1016/j.mbs.2010.10.002. Epub 2010 Oct 8.
7
Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb.
Math Med Biol. 2013 Sep;30(3):191-212. doi: 10.1093/imammb/dqs020. Epub 2012 Apr 17.
8
Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney.
J Math Biol. 2014 Mar;68(4):1023-49. doi: 10.1007/s00285-013-0667-5. Epub 2013 Mar 26.
9
Spectral properties of the tubuloglomerular feedback system.
Am J Physiol. 1997 Oct;273(4):F635-49. doi: 10.1152/ajprenal.1997.273.4.F635.
10
Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs.
Math Biosci. 2011 Apr;230(2):115-27. doi: 10.1016/j.mbs.2011.02.004. Epub 2011 Feb 15.

引用本文的文献

1
Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies.
Math Biosci Eng. 2019 Dec 17;17(2):1787-1807. doi: 10.3934/mbe.2020094.
2
Mathematical modeling of renal hemodynamics in physiology and pathophysiology.
Math Biosci. 2015 Jun;264:8-20. doi: 10.1016/j.mbs.2015.02.016. Epub 2015 Mar 9.
3
Descending vasa recta endothelial cells and pericytes form mural syncytia.
Am J Physiol Renal Physiol. 2014 Apr 1;306(7):F751-63. doi: 10.1152/ajprenal.00470.2013. Epub 2013 Dec 31.
4
Control and modulation of fluid flow in the rat kidney.
Bull Math Biol. 2013 Dec;75(12):2551-74. doi: 10.1007/s11538-013-9907-5. Epub 2013 Oct 9.
5
Modeling Transport and Flow Regulatory Mechanisms of the Kidney.
ISRN Biomath. 2012 Jul 12;2012(2012). doi: 10.5402/2012/170594.
6
Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney.
J Math Biol. 2014 Mar;68(4):1023-49. doi: 10.1007/s00285-013-0667-5. Epub 2013 Mar 26.
7
Signal transduction in a compliant short loop of Henle.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):369-83. doi: 10.1002/cnm.1475. Epub 2011 Oct 26.

本文引用的文献

1
Tubuloglomerular feedback signal transduction in a short loop of henle.
Bull Math Biol. 2010 Jan;72(1):34-62. doi: 10.1007/s11538-009-9436-4. Epub 2009 Aug 6.
2
Detection of low-frequency oscillations in renal blood flow.
Am J Physiol Renal Physiol. 2009 Jul;297(1):F155-62. doi: 10.1152/ajprenal.00114.2009. Epub 2009 May 6.
3
Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons.
Bull Math Biol. 2009 Apr;71(3):515-55. doi: 10.1007/s11538-008-9370-x. Epub 2009 Feb 10.
4
Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop.
Math Biosci. 2007 Oct;209(2):564-92. doi: 10.1016/j.mbs.2007.03.007. Epub 2007 Mar 27.
5
Assessment of renal autoregulation.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1105-23. doi: 10.1152/ajprenal.00194.2006. Epub 2007 Jan 16.
6
Effect of backleak in nephron dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 1):061911. doi: 10.1103/PhysRevE.67.061911. Epub 2003 Jun 23.
7
Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats.
Am J Physiol Renal Physiol. 2006 Jul;291(1):F79-97. doi: 10.1152/ajprenal.00048.2005. Epub 2005 Oct 4.
8
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.
10
Feedback-mediated dynamics in two coupled nephrons.
Bull Math Biol. 2004 Nov;66(6):1463-92. doi: 10.1016/j.bulm.2004.01.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验