Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.
Am J Physiol Renal Physiol. 2012 May 1;302(9):F1188-202. doi: 10.1152/ajprenal.00732.2010. Epub 2012 Jan 18.
In several previous studies, we used a mathematical model of the thick ascending limb (TAL) to investigate nonlinearities in the tubuloglomerular feedback (TGF) loop. That model, which represents the TAL as a rigid tube, predicts that TGF signal transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to constant intratubular fluid flow, the time interval required for an element of tubular fluid to traverse the TAL, as a function of time, is oscillatory and periodic but not sinusoidal. As a consequence, NaCl concentration in tubular fluid alongside the macula densa will be nonsinusoidal and thus contain harmonics of the original sinusoidal frequency. We hypothesized that the complexity found in power spectra based on in vivo time series of key TGF variables arises in part from those harmonics and that nonlinearities in TGF-mediated oscillations may result in increased NaCl delivery to the distal nephron. To investigate the possibility that a more realistic model of the TAL would damp the harmonics, we have conducted new studies in a model TAL that has compliant walls and thus a tubular radius that depends on transmural pressure. These studies predict that compliant TAL walls do not damp, but instead intensify, the harmonics. In addition, our results predict that mean TAL flow strongly influences the shape of the NaCl concentration waveform at the macula densa. This is a consequence of the inverse relationship between flow speed and transit time, which produces asymmetry between up- and downslopes of the oscillation, and the nonlinearity of TAL NaCl absorption at low flow rates, which broadens the trough of the oscillation relative to the peak. The dependence of waveform shape on mean TAL flow may be the source of the variable degree of distortion, relative to a sine wave, seen in experimental recordings of TGF-mediated oscillations.
在之前的几项研究中,我们使用厚升支(TAL)的数学模型来研究管球反馈(TGF)回路中的非线性。该模型将 TAL 表示为刚性管,预测 TAL 的 TGF 信号转导是产生非线性的因素:如果在恒定的管内液流中加入正弦振荡,则管状液流中的一个元素穿过 TAL 的时间间隔作为时间的函数是振荡和周期性的,但不是正弦的。因此,致密斑附近的管状液中的 NaCl 浓度是非正弦的,因此包含原始正弦频率的谐波。我们假设,基于体内 TGF 关键变量的时间序列的功率谱中发现的复杂性部分源于这些谐波,并且 TGF 介导的振荡中的非线性可能导致 NaCl 向远曲小管的输送增加。为了研究更现实的 TAL 模型是否会抑制谐波的可能性,我们在具有顺应性壁的模型 TAL 中进行了新的研究,从而使管腔半径取决于跨壁压力。这些研究预测顺应性 TAL 壁不会抑制,但会增强谐波。此外,我们的结果预测,TAL 平均流量强烈影响致密斑处 NaCl 浓度波形的形状。这是流速与通过时间之间的反比关系的结果,该关系产生了振荡的上升和下降斜率之间的不对称性,以及低流速下 TAL NaCl 吸收的非线性,这使得振荡的波谷相对于峰值变宽。波形形状对 TAL 平均流量的依赖性可能是 TGF 介导的振荡实验记录中所见的相对于正弦波的变形程度变化的来源。