Suppr超能文献

顺应性厚升支模型中的反馈介导动力学。

Feedback-mediated dynamics in a model of a compliant thick ascending limb.

机构信息

Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.

出版信息

Math Biosci. 2010 Dec;228(2):185-94. doi: 10.1016/j.mbs.2010.10.002. Epub 2010 Oct 8.

Abstract

The tubuloglomerular feedback (TGF) system in the kidney, which is a key regulator of filtration rate, has been shown in physiologic experiments in rats to mediate oscillations in tubular fluid pressure and flow, and in NaCl concentration in the tubular fluid of the thick ascending limb (TAL). In this study, we developed a mathematical model of the TGF system that represents NaCl transport along a TAL with compliant walls. The model was used to investigate the dynamic behaviors of the TGF system. A bifurcation analysis of the TGF model equations was performed by deriving and finding roots of the characteristic equation, which arises from a linearization of the model equations. Numerical simulations of the full model equations were conducted to assist in the interpretation of the bifurcation analysis. These techniques revealed a complex parameter region that allows a variety of qualitatively different model solutions: a regime having one stable, time-independent steady-state solution; regimes having one stable oscillatory solution only; and regimes having multiple possible stable oscillatory solutions. Model results suggest that the compliance of the TAL walls increases the tendency of the model TGF system to oscillate.

摘要

肾脏中的管球反馈 (TGF) 系统是滤过率的主要调节者,在大鼠的生理实验中已表明其介导了管状液压力和流量以及升支粗段 (TAL) 管状液中 NaCl 浓度的波动。在这项研究中,我们开发了一个 TGF 系统的数学模型,该模型代表了具有顺应性壁的 TAL 中的 NaCl 转运。该模型用于研究 TGF 系统的动态行为。通过推导和找到模型方程的特征方程的根,对 TGF 模型方程进行了分岔分析,该特征方程源于模型方程的线性化。对完整模型方程进行了数值模拟,以协助对分岔分析的解释。这些技术揭示了一个复杂的参数区域,该区域允许各种定性不同的模型解:一个具有一个稳定的、与时间无关的稳态解的区域;只有一个稳定的振荡解的区域;以及具有多个可能的稳定振荡解的区域。模型结果表明,TAL 壁的顺应性增加了模型 TGF 系统振荡的趋势。

相似文献

1
Feedback-mediated dynamics in a model of a compliant thick ascending limb.
Math Biosci. 2010 Dec;228(2):185-94. doi: 10.1016/j.mbs.2010.10.002. Epub 2010 Oct 8.
2
Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb.
Math Med Biol. 2013 Sep;30(3):191-212. doi: 10.1093/imammb/dqs020. Epub 2012 Apr 17.
3
Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs.
Math Biosci. 2011 Apr;230(2):115-27. doi: 10.1016/j.mbs.2011.02.004. Epub 2011 Feb 15.
4
Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney.
J Math Biol. 2014 Mar;68(4):1023-49. doi: 10.1007/s00285-013-0667-5. Epub 2013 Mar 26.
5
Tubuloglomerular feedback signal transduction in a short loop of henle.
Bull Math Biol. 2010 Jan;72(1):34-62. doi: 10.1007/s11538-009-9436-4. Epub 2009 Aug 6.
6
Signal transduction in a compliant short loop of Henle.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):369-83. doi: 10.1002/cnm.1475. Epub 2011 Oct 26.
7
Signal transduction in a compliant thick ascending limb.
Am J Physiol Renal Physiol. 2012 May 1;302(9):F1188-202. doi: 10.1152/ajprenal.00732.2010. Epub 2012 Jan 18.
8
Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats.
Am J Physiol Renal Physiol. 2006 Jul;291(1):F79-97. doi: 10.1152/ajprenal.00048.2005. Epub 2005 Oct 4.
9
Nonlinear filter properties of the thick ascending limb.
Am J Physiol. 1997 Oct;273(4):F625-34. doi: 10.1152/ajprenal.1997.273.4.F625.
10
Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop.
Math Biosci. 2007 Oct;209(2):564-92. doi: 10.1016/j.mbs.2007.03.007. Epub 2007 Mar 27.

引用本文的文献

1
Fluid and solute transport by cells and a model of systemic circulation.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012935. doi: 10.1371/journal.pcbi.1012935. eCollection 2025 Apr.
2
Sex-Specific Computational Models of Kidney Function in Patients With Diabetes.
Front Physiol. 2022 Jan 26;13:741121. doi: 10.3389/fphys.2022.741121. eCollection 2022.
3
A Computational Model of Kidney Function in a Patient with Diabetes.
Int J Mol Sci. 2021 May 29;22(11):5819. doi: 10.3390/ijms22115819.
4
Sex-specific computational models for blood pressure regulation in the rat.
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F888-F900. doi: 10.1152/ajprenal.00376.2019. Epub 2020 Feb 10.
5
Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1462-F1474. doi: 10.1152/ajprenal.00352.2019. Epub 2019 Sep 30.
6
A computational model of epithelial solute and water transport along a human nephron.
PLoS Comput Biol. 2019 Feb 25;15(2):e1006108. doi: 10.1371/journal.pcbi.1006108. eCollection 2019 Feb.
7
Sex-specific long-term blood pressure regulation: Modeling and analysis.
Comput Biol Med. 2019 Jan;104:139-148. doi: 10.1016/j.compbiomed.2018.11.002. Epub 2018 Nov 10.
8
Mathematical modeling of renal hemodynamics in physiology and pathophysiology.
Math Biosci. 2015 Jun;264:8-20. doi: 10.1016/j.mbs.2015.02.016. Epub 2015 Mar 9.
9
Bifurcation study of blood flow control in the kidney.
Math Biosci. 2015 May;263:169-79. doi: 10.1016/j.mbs.2015.02.015. Epub 2015 Mar 5.
10
Control and modulation of fluid flow in the rat kidney.
Bull Math Biol. 2013 Dec;75(12):2551-74. doi: 10.1007/s11538-013-9907-5. Epub 2013 Oct 9.

本文引用的文献

1
Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons.
Bull Math Biol. 2009 Apr;71(3):515-55. doi: 10.1007/s11538-008-9370-x. Epub 2009 Feb 10.
2
Effect of tubular inhomogeneities on filter properties of thick ascending limb of Henle's loop.
Math Biosci. 2007 Oct;209(2):564-92. doi: 10.1016/j.mbs.2007.03.007. Epub 2007 Mar 27.
3
Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats.
Am J Physiol Renal Physiol. 2006 Jul;291(1):F79-97. doi: 10.1152/ajprenal.00048.2005. Epub 2005 Oct 4.
4
A comparative study of renal interstitial pressure.
Am J Physiol. 1952 Apr;169(1):180-7. doi: 10.1152/ajplegacy.1952.169.1.180.
6
A region-based model framework for the rat urine concentrating mechanism.
Bull Math Biol. 2003 Sep;65(5):859-901. doi: 10.1016/S0092-8240(03)00045-4.
7
Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery.
Am J Physiol Renal Physiol. 2000 Feb;278(2):F287-301. doi: 10.1152/ajprenal.2000.278.2.F287.
9
Spectral properties of the tubuloglomerular feedback system.
Am J Physiol. 1997 Oct;273(4):F635-49. doi: 10.1152/ajprenal.1997.273.4.F635.
10
A dynamic numerical method for models of renal tubules.
Bull Math Biol. 1994 May;56(3):547-65. doi: 10.1007/BF02460470.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验