Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, United States.
Biochemistry. 2012 Feb 14;51(6):1101-13. doi: 10.1021/bi2018333. Epub 2012 Feb 2.
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric μ-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH(2)-benzoate and p-Br-benzoate showed a μ-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a π-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 Å) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.
甲苯 4-单加氧酶羟化酶与反应产物和效应蛋白复合物的晶体结构揭示了导致区域特异性的活性位点相互作用。与酚类产物的复合物产生不对称的μ-苯氧桥联双核铁中心,并将双核铁配体 E231 转移到与保守的 T201 形成氢键的位置。相比之下,与抑制剂对-NH2-苯甲酸和对-Br-苯甲酸的复合物显示出羧酸盐氧的μ-1,1 配位,铁原子之间,并且 E231 的位置只有部分转移。在活性位点残基中,F176 将产物的芳环捕获在由 G103、E104 和 A107 形成的活性位点腔表面上,而 F196 通过π-堆积相互作用将芳环定位在该表面上。G103 和 F176 与底物芳环的对位取代基的接近以及 G103L T4moHD 的结构表明,G103 突变如何导致区域特异性的变化。尽管效应蛋白结合导致活性位点外部分的残基位置(T201、N202 和 Q228)以及一些铁配体(E231 和 E197)发生显著变化,但活性位点的内部残基(F176、F196 和其他内部残基)仅发生较小变化(<1 Å)。同样,在存在或不存在效应蛋白的情况下,产物结合到双核铁中心不会显著改变内部残基的位置,这表明效应蛋白结合不会强烈影响配体的定位。因此,在不存在效应蛋白的情况下,产物分布的变化被认为是由于反应的化学步骤的速率相对于未复合的、效率较低的酶的活性位点通道内的底物运动的差异引起的,而与双核铁配体几何形状相关的结构变化与铁二价和铁三价状态之间的循环有关,讨论了它们对产物释放的潜在贡献。