Suppr超能文献

补体 C6 的结构提示了膜攻击复合物(MAC)起始和单向、顺序组装的机制。

Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC).

机构信息

Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and.

Torrey Pines Institute for Molecular Studies, San Diego, California 92121.

出版信息

J Biol Chem. 2012 Mar 23;287(13):10210-10222. doi: 10.1074/jbc.M111.327809. Epub 2012 Jan 20.

Abstract

The complement membrane attack complex (MAC) is formed by the sequential assembly of C5b with four homologous proteins as follows: one copy each of C6, C7, and C8 and 12-14 copies of C9. Together these form a lytic pore in bacterial membranes. C6 through C9 comprise a MAC-perforin domain flanked by 4-9 "auxiliary" domains. Here, we report the crystal structure of C6, the first and longest of the pore proteins to be recruited by C5b. Comparisons with the structures of the C8αβγ heterodimer and perforin show that the central domain of C6 adopts a "closed" (perforin-like) state that is distinct from the "open" conformations in C8. We further show that C6, C8α, and C8β contain three homologous subdomains ("upper," "lower," and "regulatory") related by rotations about two hinge points. In C6, the regulatory segment includes four auxiliary domains that stabilize the closed conformation, inhibiting release of membrane-inserting elements. In C8β, rotation of the regulatory segment is linked to an opening of the central β-sheet of its clockwise partner, C8α. Based on these observations, we propose a model for initiation and unidirectional propagation of the MAC in which the auxiliary domains play key roles: in the assembly of the C5b-8 initiation complex; in driving and regulating the opening of the β-sheet of the MAC-performin domain of each new recruit as it adds to the growing pore; and in stabilizing the final pore. Our model of the assembled pore resembles those of the cholesterol-dependent cytolysins but is distinct from that recently proposed for perforin.

摘要

补体膜攻击复合物(MAC)是由 C5b 与以下四个同源蛋白的顺序组装形成的:C6、C7 和 C8 的各一份和 C9 的 12-14 份。这些共同在细菌膜上形成一个溶解孔。C6 到 C9 组成一个 MAC-穿孔素结构域,两侧为 4-9 个“辅助”结构域。在这里,我们报告了 C6 的晶体结构,C6 是被 C5b 招募的第一个也是最长的孔蛋白。与 C8αβγ 异源二聚体和穿孔素的结构比较表明,C6 的中心结构域采用了一种“关闭”(穿孔素样)状态,与 C8 中的“开放”构象不同。我们进一步表明,C6、C8α 和 C8β 包含三个同源亚结构域(“上”、“下”和“调节”),通过两个铰链点的旋转相关。在 C6 中,调节段包含四个辅助结构域,稳定关闭构象,抑制插入膜元件的释放。在 C8β 中,调节段的旋转与顺时针伙伴 C8α 的中心β-片层的打开有关。基于这些观察结果,我们提出了一个 MAC 起始和单向传播的模型,其中辅助结构域起着关键作用:在 C5b-8 起始复合物的组装中;在每个新招募的 MAC-穿孔素结构域的β-片层的打开和调节中,随着孔的生长而增加;并在稳定最终的孔中。组装的孔的我们的模型类似于胆固醇依赖性细胞溶解素的模型,但与最近提出的穿孔素模型不同。

相似文献

1
Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC).
J Biol Chem. 2012 Mar 23;287(13):10210-10222. doi: 10.1074/jbc.M111.327809. Epub 2012 Jan 20.
2
Crystal structure of C5b-6 suggests structural basis for priming assembly of the membrane attack complex.
J Biol Chem. 2012 Jun 1;287(23):19642-52. doi: 10.1074/jbc.M112.361121. Epub 2012 Apr 12.
3
Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement.
J Biol Chem. 2011 May 20;286(20):17585-92. doi: 10.1074/jbc.M111.219766. Epub 2011 Mar 25.
7
Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9.
Cell Rep. 2012 Mar 29;1(3):200-7. doi: 10.1016/j.celrep.2012.02.003. Epub 2012 Feb 23.
8
Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit.
J Mol Biol. 2008 May 30;379(2):331-42. doi: 10.1016/j.jmb.2008.03.061. Epub 2008 Apr 3.
10
The first transmembrane region of complement component-9 acts as a brake on its self-assembly.
Nat Commun. 2018 Aug 15;9(1):3266. doi: 10.1038/s41467-018-05717-0.

引用本文的文献

1
The Complement System.
Adv Exp Med Biol. 2025;1476:147-198. doi: 10.1007/978-3-031-85340-1_7.
2
Action of the Terminal Complement Pathway on Cell Membranes.
J Membr Biol. 2025 Mar 23. doi: 10.1007/s00232-025-00343-6.
6
Structural basis of soluble membrane attack complex packaging for clearance.
Nat Commun. 2021 Oct 19;12(1):6086. doi: 10.1038/s41467-021-26366-w.
7
Protein -Mannosylation and -Mannosyl Tryptophan in Chemical Biology and Medicine.
Molecules. 2021 Aug 30;26(17):5258. doi: 10.3390/molecules26175258.
8
Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry.
EMBO J. 2021 Feb 15;40(4):e106174. doi: 10.15252/embj.2020106174. Epub 2021 Jan 18.
9
To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins.
Front Immunol. 2020 Nov 13;11:601405. doi: 10.3389/fimmu.2020.601405. eCollection 2020.
10
How Structures of Complement Complexes Guide Therapeutic Design.
Subcell Biochem. 2021;96:273-295. doi: 10.1007/978-3-030-58971-4_7.

本文引用的文献

1
Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement.
J Biol Chem. 2011 May 20;286(20):17585-92. doi: 10.1074/jbc.M111.219766. Epub 2011 Mar 25.
2
The structural basis for membrane binding and pore formation by lymphocyte perforin.
Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.
3
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
4
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
6
The central portion of factor H (modules 10-15) is compact and contains a structurally deviant CCP module.
J Mol Biol. 2010 Jan 8;395(1):105-22. doi: 10.1016/j.jmb.2009.10.010. Epub 2009 Oct 14.
7
Molecular cloning of the terminal complement components C6 and C8beta of cartilaginous fish.
Fish Shellfish Immunol. 2009 Dec;27(6):768-72. doi: 10.1016/j.fsi.2009.08.008. Epub 2009 Aug 27.
10
The MACPF/CDC family of pore-forming toxins.
Cell Microbiol. 2008 Sep;10(9):1765-74. doi: 10.1111/j.1462-5822.2008.01191.x. Epub 2008 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验