Suppr超能文献

基于人群的体外模型中的化学毒性的高通量定量筛选。

Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model.

机构信息

University of North Carolina, Chapel Hill, North Carolina 27599, USA.

出版信息

Toxicol Sci. 2012 Apr;126(2):578-88. doi: 10.1093/toxsci/kfs023. Epub 2012 Jan 19.

Abstract

A shift in toxicity testing from in vivo to in vitro may efficiently prioritize compounds, reveal new mechanisms, and enable predictive modeling. Quantitative high-throughput screening (qHTS) is a major source of data for computational toxicology, and our goal in this study was to aid in the development of predictive in vitro models of chemical-induced toxicity, anchored on interindividual genetic variability. Eighty-one human lymphoblast cell lines from 27 Centre d'Etude du Polymorphisme Humain trios were exposed to 240 chemical substances (12 concentrations, 0.26nM-46.0μM) and evaluated for cytotoxicity and apoptosis. qHTS screening in the genetically defined population produced robust and reproducible results, which allowed for cross-compound, cross-assay, and cross-individual comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited interindividual differences in cytotoxicity. Specifically, the qHTS in a population-based human in vitro model system has several unique aspects that are of utility for toxicity testing, chemical prioritization, and high-throughput risk assessment. First, standardized and high-quality concentration-response profiling, with reproducibility confirmed by comparison with previous experiments, enables prioritization of chemicals for variability in interindividual range in cytotoxicity. Second, genome-wide association analysis of cytotoxicity phenotypes allows exploration of the potential genetic determinants of interindividual variability in toxicity. Furthermore, highly significant associations identified through the analysis of population-level correlations between basal gene expression variability and chemical-induced toxicity suggest plausible mode of action hypotheses for follow-up analyses. We conclude that as the improved resolution of genetic profiling can now be matched with high-quality in vitro screening data, the evaluation of the toxicity pathways and the effects of genetic diversity are now feasible through the use of human lymphoblast cell lines.

摘要

从体内到体外的毒性测试转变可以有效地对化合物进行优先级排序,揭示新的机制,并实现预测建模。高通量筛选(qHTS)是计算毒理学的主要数据来源,我们在这项研究中的目标是帮助开发基于个体遗传变异性的化学诱导毒性的体外预测模型。从 27 个人类多态性研究中心的 81 个人类淋巴母细胞系中,暴露于 240 种化学物质(12 种浓度,0.26nM-46.0μM)并评估细胞毒性和细胞凋亡。在遗传定义的人群中进行 qHTS 筛选可产生稳健且可重复的结果,从而可以进行跨化合物、跨测定和跨个体的比较。一些化合物以相似的浓度对所有细胞类型均具有细胞毒性,而另一些化合物则具有细胞毒性的个体间差异。具体而言,基于人群的人类体外模型系统中的 qHTS 具有几个独特的方面,这些方面对毒性测试、化学物质优先级排序和高通量风险评估非常有用。首先,标准化和高质量的浓度反应谱,通过与以前的实验进行比较来确认重复性,可优先对具有细胞毒性个体间差异的化学物质进行排序。其次,对细胞毒性表型进行全基因组关联分析可以探索毒性个体间差异的潜在遗传决定因素。此外,通过分析人群水平的基础基因表达变异性与化学诱导毒性之间的相关性而得出的高度显著关联,提出了用于后续分析的合理作用机制假说。我们得出结论,由于遗传分析分辨率的提高现在可以与高质量的体外筛选数据相匹配,因此通过使用人类淋巴母细胞系,现在可以评估毒性途径和遗传多样性的影响。

相似文献

1
Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model.
Toxicol Sci. 2012 Apr;126(2):578-88. doi: 10.1093/toxsci/kfs023. Epub 2012 Jan 19.
2
In vitro screening for population variability in chemical toxicity.
Toxicol Sci. 2011 Feb;119(2):398-407. doi: 10.1093/toxsci/kfq322. Epub 2010 Oct 15.
3
Compound cytotoxicity profiling using quantitative high-throughput screening.
Environ Health Perspect. 2008 Mar;116(3):284-91. doi: 10.1289/ehp.10727.
4
Paradigm shift in toxicity testing and modeling.
AAPS J. 2012 Sep;14(3):473-80. doi: 10.1208/s12248-012-9358-1. Epub 2012 Apr 20.
5
In vitro screening for population variability in toxicity of pesticide-containing mixtures.
Environ Int. 2015 Dec;85:147-55. doi: 10.1016/j.envint.2015.09.012. Epub 2015 Sep 19.
6
A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9758-63. doi: 10.1073/pnas.0703736104. Epub 2007 May 30.
7
8
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13.
9
The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform.
Drug Discov Today. 2010 Dec;15(23-24):997-1007. doi: 10.1016/j.drudis.2010.07.007. Epub 2010 Aug 11.
10
Population-based in vitro hazard and concentration-response assessment of chemicals: the 1000 genomes high-throughput screening study.
Environ Health Perspect. 2015 May;123(5):458-66. doi: 10.1289/ehp.1408775. Epub 2015 Jan 13.

引用本文的文献

1
The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives.
Drug Des Devel Ther. 2023 Sep 6;17:2691-2725. doi: 10.2147/DDDT.S424991. eCollection 2023.
3
Model systems and organisms for addressing inter- and intra-species variability in risk assessment.
Regul Toxicol Pharmacol. 2022 Jul;132:105197. doi: 10.1016/j.yrtph.2022.105197. Epub 2022 May 28.
4
A tiered approach to population-based in vitro testing for cardiotoxicity: Balancing estimates of potency and variability.
J Pharmacol Toxicol Methods. 2022 Mar-Apr;114:107154. doi: 10.1016/j.vascn.2022.107154. Epub 2022 Jan 6.
5
Methods for evaluating variability in human health dose-response characterization.
Hum Ecol Risk Assess. 2019 Nov 6;25:1-24. doi: 10.1080/10807039.2019.1615828.
6
Initial Assessment of Variability of Responses to Toxicants in Donor-Specific Endothelial Colony Forming Cells.
Front Public Health. 2018 Dec 21;6:369. doi: 10.3389/fpubh.2018.00369. eCollection 2018.
7
Bridging the Data Gap From Toxicity Testing to Chemical Safety Assessment Through Computational Modeling.
Front Public Health. 2018 Sep 11;6:261. doi: 10.3389/fpubh.2018.00261. eCollection 2018.
9
A tiered, Bayesian approach to estimating of population variability for regulatory decision-making.
ALTEX. 2017;34(3):377-388. doi: 10.14573/altex.1608251. Epub 2016 Dec 13.

本文引用的文献

1
Rare and common regulatory variation in population-scale sequenced human genomes.
PLoS Genet. 2011 Jul;7(7):e1002144. doi: 10.1371/journal.pgen.1002144. Epub 2011 Jul 21.
2
A powerful and flexible approach to the analysis of RNA sequence count data.
Bioinformatics. 2011 Oct 1;27(19):2672-8. doi: 10.1093/bioinformatics/btr449. Epub 2011 Aug 2.
3
Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment.
Chem Res Toxicol. 2011 Apr 18;24(4):451-62. doi: 10.1021/tx100428e. Epub 2011 Mar 8.
4
A map of human genome variation from population-scale sequencing.
Nature. 2010 Oct 28;467(7319):1061-73. doi: 10.1038/nature09534.
5
6
In vitro screening for population variability in chemical toxicity.
Toxicol Sci. 2011 Feb;119(2):398-407. doi: 10.1093/toxsci/kfq322. Epub 2010 Oct 15.
7
Endocrine profiling and prioritization of environmental chemicals using ToxCast data.
Environ Health Perspect. 2010 Dec;118(12):1714-20. doi: 10.1289/ehp.1002180. Epub 2010 Sep 8.
8
An enhanced tiered toxicity testing framework with triggers for assessing hazards and risks of commodity chemicals.
Regul Toxicol Pharmacol. 2010 Dec;58(3):382-94. doi: 10.1016/j.yrtph.2010.08.003. Epub 2010 Aug 13.
9
Toxicogenetics: population-based testing of drug and chemical safety in mouse models.
Pharmacogenomics. 2010 Aug;11(8):1127-36. doi: 10.2217/pgs.10.100.
10
LocusZoom: regional visualization of genome-wide association scan results.
Bioinformatics. 2010 Sep 15;26(18):2336-7. doi: 10.1093/bioinformatics/btq419. Epub 2010 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验