Suppr超能文献

毒性测试和建模中的范式转变。

Paradigm shift in toxicity testing and modeling.

机构信息

Department of Health and Human Services, NIH Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland 20892-3370, USA.

出版信息

AAPS J. 2012 Sep;14(3):473-80. doi: 10.1208/s12248-012-9358-1. Epub 2012 Apr 20.

Abstract

The limitations of traditional toxicity testing characterized by high-cost animal models with low-throughput readouts, inconsistent responses, ethical issues, and extrapolability to humans call for alternative strategies for chemical risk assessment. A new strategy using in vitro human cell-based assays has been designed to identify key toxicity pathways and molecular mechanisms leading to the prediction of an in vivo response. The emergence of quantitative high-throughput screening (qHTS) technology has proved to be an efficient way to decompose complex toxicological end points to specific pathways of targeted organs. In addition, qHTS has made a significant impact on computational toxicology in two aspects. First, the ease of mechanism of action identification brought about by in vitro assays has enhanced the simplicity and effectiveness of machine learning, and second, the high-throughput nature and high reproducibility of qHTS have greatly improved the data quality and increased the quantity of training datasets available for predictive model construction. In this review, the benefits of qHTS routinely used in the US Tox21 program will be highlighted. Quantitative structure-activity relationships models built on traditional in vivo data and new qHTS data will be compared and analyzed. In conjunction with the transition from the pilot phase to the production phase of the Tox21 program, more qHTS data will be made available that will enrich the data pool for predictive toxicology. It is perceivable that new in silico toxicity models based on high-quality qHTS data will achieve unprecedented reliability and robustness, thus becoming a valuable tool for risk assessment and drug discovery.

摘要

传统毒性测试的局限性在于其高成本的动物模型、低通量的读数、不一致的反应、伦理问题以及对人类的外推性,这就需要替代策略来进行化学风险评估。一种新的策略是使用基于体外人类细胞的检测来识别导致体内反应的关键毒性途径和分子机制。定量高通量筛选 (qHTS) 技术的出现已被证明是一种将复杂的毒理学终点分解为靶向器官特定途径的有效方法。此外,qHTS 在两个方面对计算毒理学产生了重大影响。首先,体外检测带来的作用机制识别的便利性增强了机器学习的简单性和有效性,其次,qHTS 的高通量性质和高重复性极大地提高了数据质量并增加了用于预测模型构建的训练数据集的数量。在这篇综述中,将重点介绍美国 Tox21 计划中常规使用的 qHTS 的优势。将基于传统体内数据和新的 qHTS 数据构建的定量构效关系模型进行比较和分析。随着 Tox21 计划从试点阶段向生产阶段的过渡,将提供更多的 qHTS 数据,从而丰富预测毒理学的数据池。可以预见的是,基于高质量 qHTS 数据的新计算毒性模型将实现前所未有的可靠性和稳健性,从而成为风险评估和药物发现的有价值工具。

相似文献

1
Paradigm shift in toxicity testing and modeling.毒性测试和建模中的范式转变。
AAPS J. 2012 Sep;14(3):473-80. doi: 10.1208/s12248-012-9358-1. Epub 2012 Apr 20.

引用本文的文献

9
Comparing Machine Learning Models for Aromatase (P450 19A1).比较芳香酶(P45019A1)的机器学习模型。
Environ Sci Technol. 2020 Dec 1;54(23):15546-15555. doi: 10.1021/acs.est.0c05771. Epub 2020 Nov 19.
10
Comparison of Machine Learning Models for the Androgen Receptor.雄激素受体机器学习模型的比较。
Environ Sci Technol. 2020 Nov 3;54(21):13690-13700. doi: 10.1021/acs.est.0c03984. Epub 2020 Oct 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验