Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Drug Metab Dispos. 2012 Apr;40(4):803-14. doi: 10.1124/dmd.111.044404. Epub 2012 Jan 23.
Etravirine (ETR) is a second-generation non-nucleoside reverse transcriptase inhibitor prescribed for the treatment of HIV-1. By using human liver microsomes (HLMs), cDNA-expressed cytochromes P450 (P450s), and UDP-glucuronosyltransferases (UGTs), the routes of ETR metabolism were defined. Incubations with cDNA-expressed P450 isozymes and chemical inhibition studies using HLMs indicated that CYP2C19 is primarily responsible for the formation of both the major monohydroxylated and dihydroxylated metabolites of ETR. Tandem mass spectrometry suggested that these metabolites were produced via monomethylhydroxylation and dimethylhydroxylation of the dimethylbenzonitrile moiety. Formation of these monohydroxy and dihydroxy metabolites was decreased by 75 and 100%, respectively, in assays performed using HLMs that were genotyped as homozygous for the loss-of-function CYP2C192 allele compared with formation by HLMs genotyped as CYP2C191/*1. Two monohydroxylated metabolites of lower abundance were formed by CYP3A4, and interestingly, although CYP2C9 showed no activity toward the parent compound, this enzyme appeared to act in concert with CYP3A4 to form two minor dihydroxylated products of ETR. UGT1A3 and UGT1A8 were demonstrated to glucuronidate a CYP3A4-dependent monohydroxylated product. In addition, treatment of primary human hepatocytes with ETR resulted in 3.2-, 5.2-, 11.8-, and 17.9-fold increases in CYP3A4 mRNA levels 6, 12, 24, and 72 h after treatment. The presence of the pregnane X receptor antagonist sulforaphane blocked the ETR-mediated increase in CYP3A4 mRNA expression. Taken together, these data suggest that ETR and ETR metabolites are substrates of CYP2C19, CYP3A4, CYP2C9, UGT1A3, and UGT1A8 and that ETR is a PXR-dependent modulator of CYP3A4 mRNA levels.
依曲韦林(ETR)是一种第二代非核苷类逆转录酶抑制剂,用于治疗 HIV-1。通过使用人肝微粒体(HLMs)、cDNA 表达细胞色素 P450(P450s)和 UDP-葡糖醛酸基转移酶(UGTs),确定了 ETR 代谢途径。用 cDNA 表达的 P450 同工酶孵育和用 HLMs 进行的化学抑制研究表明,CYP2C19 主要负责形成 ETR 的主要单羟基化和二羟基化代谢物。串联质谱提示这些代谢物是通过二甲基苯甲腈部分的单甲基化和二甲基化生成的。与 HLMs 基因分型为 CYP2C19*1/1 的情况相比,在用 HLMs 进行的测定中,这些单羟基和二羟基代谢物的形成分别减少了 75%和 100%,这些 HLMs 被基因分型为纯合子丧失功能 CYP2C192 等位基因。CYP3A4 形成两种丰度较低的单羟基代谢物,有趣的是,尽管 CYP2C9 对母体化合物没有活性,但该酶似乎与 CYP3A4 协同作用形成 ETR 的两种次要二羟基化产物。UGT1A3 和 UGT1A8 被证明可使 CYP3A4 依赖性单羟基化产物发生葡糖醛酸化。此外,在用 ETR 处理原代人肝细胞后,6、12、24 和 72 h 时 CYP3A4 mRNA 水平分别增加了 3.2、5.2、11.8 和 17.9 倍。普萘洛尔 X 受体拮抗剂 sulforaphane 的存在阻断了 ETR 介导的 CYP3A4 mRNA 表达的增加。总之,这些数据表明 ETR 和 ETR 代谢物是 CYP2C19、CYP3A4、CYP2C9、UGT1A3 和 UGT1A8 的底物,并且 ETR 是 PXR 依赖性 CYP3A4 mRNA 水平调节剂。