Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
Mol Cell Proteomics. 2012 Jun;11(6):M111.014258. doi: 10.1074/mcp.M111.014258. Epub 2012 Jan 23.
A fundamental question in biology is how genome-wide changes in gene expression are enacted in response to a finite stimulus. Recent studies have mapped changes in nucleosome localization, determined the binding preferences for individual transcription factors, and shown that the genome adopts a nonrandom structure in vivo. What remains unclear is how global changes in the proteins bound to DNA alter chromatin structure and gene expression. We have addressed this question in the mouse heart, a system in which global gene expression and massive phenotypic changes occur without cardiac cell division, making the mechanisms of chromatin remodeling centrally important. To determine factors controlling genomic plasticity, we used mass spectrometry to measure chromatin-associated proteins. We have characterized the abundance of 305 chromatin-associated proteins in normal cells and measured changes in 108 proteins that accompany the progression of heart disease. These studies were conducted on a high mass accuracy instrument and confirmed in multiple biological replicates, facilitating statistical analysis and allowing us to interrogate the data bioinformatically for modules of proteins involved in similar processes. Our studies reveal general principles for global shifts in chromatin accessibility: altered linker to core histone ratio; differing abundance of chromatin structural proteins; and reprogrammed histone post-translational modifications. Using small interfering RNA-mediated loss-of-function in isolated cells, we demonstrate that the non-histone chromatin structural protein HMGB2 (but not HMGB1) suppresses pathologic cell growth in vivo and controls a gene expression program responsible for hypertrophic cell growth. Our findings reveal the basis for alterations in chromatin structure necessary for genome-wide changes in gene expression. These studies have fundamental implications for understanding how global chromatin remodeling occurs with specificity and accuracy, demonstrating that isoform-specific alterations in chromatin structural proteins can impart these features.
生物学中的一个基本问题是,基因组范围内的基因表达变化是如何响应有限的刺激而发生的。最近的研究已经绘制了核小体定位的变化图,确定了单个转录因子的结合偏好,并表明基因组在体内采用非随机结构。目前尚不清楚与 DNA 结合的蛋白质的全局变化如何改变染色质结构和基因表达。我们在小鼠心脏中解决了这个问题,在这个系统中,全局基因表达和大量表型变化发生而心脏细胞不分裂,使得染色质重塑的机制变得至关重要。为了确定控制基因组可塑性的因素,我们使用质谱法测量与染色质相关的蛋白质。我们已经描述了正常细胞中 305 种与染色质相关的蛋白质的丰度,并测量了伴随心脏病进展的 108 种蛋白质的变化。这些研究是在高质量精度仪器上进行的,并在多个生物学重复中得到了证实,这便于进行统计分析,并使我们能够在生物信息学上对涉及类似过程的蛋白质模块进行查询。我们的研究揭示了染色质可及性全局变化的一般原则:连接子到核心组蛋白比率的改变;染色质结构蛋白丰度的不同;以及组蛋白翻译后修饰的重新编程。使用分离细胞中的小干扰 RNA 介导的功能丧失,我们证明了非组蛋白染色质结构蛋白 HMGB2(而不是 HMGB1)在体内抑制病理性细胞生长,并控制负责肥大细胞生长的基因表达程序。我们的发现揭示了染色质结构改变的基础,这些改变是基因表达全基因组变化所必需的。这些研究对于理解全局染色质重塑如何具有特异性和准确性具有根本意义,表明染色质结构蛋白的同工型特异性改变可以赋予这些特征。