Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6131, USA,
Anal Bioanal Chem. 2012 Apr;403(2):335-43. doi: 10.1007/s00216-011-5676-x. Epub 2012 Jan 26.
A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II), and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface or slow the kinetics of the analyte electrochemical reactions, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less, and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chain length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.
一种市售的基于芯片的输注纳升电喷雾离子化系统被用于对金属烷基卟啉进行离子化,以便通过质谱进行质谱检测和结构解析。通过使用该设备提供的两种不同类型的导电移液管尖端,创建了模型化合物(镍(II)、钒(II)、铜(II)和钴(II)八乙基卟啉)的不同离子形式。这些移液管尖端提供了与溶液的导电接触,在该设备中,电喷雾所固有的电解过程发生在该接触处。原始的未修饰的、裸露的碳浸渍塑料移液管尖端被利用来有意地电化学氧化(离子化)卟啉,以形成用于检测的分子自由基阳离子。使用经过修饰的移液管尖端,其表面涂层旨在抑制分析物向表面的质量传输或减缓分析物电化学反应的动力学,这表明在这些卟啉的质谱中观察到的离子种类在很大程度上受到限制,但不是完全受到限制,仅限于质子化分子。在这些实验条件下,未涂层移液管尖端的有效氧化上限电位为 1.1V 或更低,而涂层移液管尖端有效地阻止了氧化还原电位大于约 0.25V 的分析物的氧化。无论是分子离子种类的产物离子光谱都可以用于确定卟啉大环上的烷基链长度。使用从吉尔森沥青中分离出的镍地质卟啉馏分,证明了这种电化学电离方法在分析天然样品中的应用。还说明了通过获取中性损失光谱作为提高这些复杂天然样品检测特异性的一种手段。