Suppr超能文献

验证对抗耐药性的活力策略。

Validating the vitality strategy for fighting drug resistance.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA.

出版信息

Proteins. 2012 Apr;80(4):1110-22. doi: 10.1002/prot.24012. Epub 2012 Jan 31.

Abstract

The current challenge in designing effective drugs against HIV-1 is to find novel candidates with high potency, but with a lower susceptibility to mutations associated with drug resistance. Trying to address this challenge, we developed in our previous study (Ishikita and Warshel, Angew Chem Int Ed Engl 2008; 47:697-700) a novel computational strategy for fighting drug resistance by predicting the likely moves of the virus through constraints on binding and catalysis. This has been based on calculating the ratio between the vitality values ((K(i) k(cat)/K(M))(mutant)/(K(i) k(cat)/K(M))(wild-type)) and using it as a guide for predicting the moves of the virus. The corresponding calculations of the binding affinity, K(i), were carried out using the semi-macroscopic version of the protein dipole Langevin dipole (PDLD/S) in its linear response approximation (LRA) in its β version (PDLD/S-LRA/β). We also calculate the proteolytic efficiency, k(cat)/K(M), by evaluating the transition state (TS) binding free energies using the PDLD/S-LRA/β method. Here we provide an extensive validation of our strategy by calculating the vitality of six existing clinical and experimental drug candidates. It is found that the computationally determined vitalities correlate reasonably well with those derived from the corresponding experimental data. This indicates that the calculated vitality may be used to identify mutations that would be most effective for the survival of the virus. Thus, it should be possible to use our approach in screening for mutations that would provide the most effective resistance to any proposed antiviral drug. This ability should be very useful in guiding the design of drug molecules that will lead to the slowest resistance.

摘要

当前设计有效抗 HIV-1 药物的挑战在于寻找具有高活性但突变易感性较低的新型候选药物,这些突变与药物耐药性相关。为了应对这一挑战,我们在之前的研究中开发了一种新的计算策略,通过对结合和催化的限制来预测病毒可能的变化,从而对抗药物耐药性。这是基于计算活力值的比值(((K(i) k(cat)/K(M))(mutant)/(K(i) k(cat)/K(M))(wild-type))),并将其用作预测病毒运动的指南。使用其线性响应近似 (LRA) 的β版本 (PDLD/S-LRA/β),我们还通过评估过渡态 (TS) 结合自由能来计算蛋白偶极 Langevin 偶极子 (PDLD/S) 的半宏观版本的结合亲和力,K(i)。在此,我们通过计算六种现有的临床和实验性药物候选物的活力来广泛验证我们的策略。结果发现,计算出的活力与相应的实验数据相当吻合。这表明计算出的活力可用于鉴定对病毒存活最有效的突变。因此,我们可以使用这种方法筛选出对任何拟议的抗病毒药物最有效的耐药性突变。这种能力对于指导设计导致耐药性最慢的药物分子非常有用。

相似文献

1
Validating the vitality strategy for fighting drug resistance.
Proteins. 2012 Apr;80(4):1110-22. doi: 10.1002/prot.24012. Epub 2012 Jan 31.
2
Predicting drug-resistant mutations of HIV protease.
Angew Chem Int Ed Engl. 2008;47(4):697-700. doi: 10.1002/anie.200704178.
6
Computational mutation scanning and drug resistance mechanisms of HIV-1 protease inhibitors.
J Phys Chem B. 2010 Jul 29;114(29):9663-76. doi: 10.1021/jp102546s.
8
Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
J Mol Graph Model. 2015 Mar;56:60-73. doi: 10.1016/j.jmgm.2014.11.003. Epub 2014 Dec 5.
9
Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation.
J Mol Biol. 2006 May 19;358(5):1191-9. doi: 10.1016/j.jmb.2006.02.076. Epub 2006 Mar 20.
10
Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
J Mol Model. 2004 Dec;10(5-6):373-81. doi: 10.1007/s00894-004-0205-x. Epub 2004 Sep 28.

引用本文的文献

1
Computational protein design repurposed to explore enzyme vitality and help predict antibiotic resistance.
Front Mol Biosci. 2023 Jan 9;9:905588. doi: 10.3389/fmolb.2022.905588. eCollection 2022.
2
Exploring the Drug Resistance of HCV Protease.
J Phys Chem B. 2017 Jul 20;121(28):6831-6840. doi: 10.1021/acs.jpcb.7b04562. Epub 2017 Jul 5.
3
The control of the discrimination between dNTP and rNTP in DNA and RNA polymerase.
Proteins. 2016 Nov;84(11):1616-1624. doi: 10.1002/prot.25104. Epub 2016 Aug 10.
4
Homologous ligands accommodated by discrete conformations of a buried cavity.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5039-44. doi: 10.1073/pnas.1500806112. Epub 2015 Apr 6.
5
Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture).
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10020-31. doi: 10.1002/anie.201403689. Epub 2014 Jul 24.

本文引用的文献

1
Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
Biochemistry. 2011 May 10;50(18):3849-58. doi: 10.1021/bi200063a. Epub 2011 Apr 15.
2
Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16869-74. doi: 10.1073/pnas.1010381107. Epub 2010 Sep 9.
4
Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1321-6. doi: 10.1073/pnas.0907304107. Epub 2010 Jan 11.
6
Toward accurate screening in computer-aided enzyme design.
Biochemistry. 2009 Apr 14;48(14):3046-56. doi: 10.1021/bi802191b.
7
Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.
Int J Antimicrob Agents. 2009 Apr;33(4):307-20. doi: 10.1016/j.ijantimicag.2008.10.010. Epub 2008 Dec 23.
8
Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
J Mol Biol. 2008 Aug 1;381(1):102-15. doi: 10.1016/j.jmb.2008.05.062. Epub 2008 Jul 1.
9
Predicting drug-resistant mutations of HIV protease.
Angew Chem Int Ed Engl. 2008;47(4):697-700. doi: 10.1002/anie.200704178.
10
Evaluating the potency of HIV-1 protease drugs to combat resistance.
Proteins. 2008 May 15;71(3):1163-74. doi: 10.1002/prot.21808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验