Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA.
Proteins. 2010 Apr;78(5):1212-27. doi: 10.1002/prot.22640.
Evaluating the free-energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse-grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77-80) uses the CG model as a reference potential for free-energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition-states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time-dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed.
评估蛋白质的自由能景观及其相应的功能方面是计算机模拟方法面临的主要挑战。这种挑战源于景观的复杂性和收敛模拟所需的巨大计算机时间。使用简化的粗粒(CG)折叠模型提供了一种有效的方法来对景观进行采样,但这种处理方法可能无法正确描述实际蛋白质残基的影响。我们早期工作中提出的一种解决此问题的一般方法(Fan 等人,Theor Chem Acc 1999;103:77-80)将 CG 模型用作自由能计算的参考势,用于计算显式模型的不同性质。本文对该方法进行了改进和扩展,重点是改进静电处理并展示关键应用。这些应用包括:评估突变对折叠能的影响、计算过渡态结合自由能(对合理的酶设计至关重要)、评估催化景观以及评估对 pH 值变化的时变响应。此外,还讨论了我们的方法在克服蛋白质结构功能相关性研究中的主要挑战方面的普遍潜力。