Lambeth J D, Seybert D W, Kamin H
J Biol Chem. 1979 Aug 10;254(15):7255-64.
We have shown (Seybert, D., Lambeth, D., and Kamin, H. (1978), J. Biol. Chem. 253, 8355-8358) that, whereas the 1:1 complex between adrenodoxin reductase and adrenodoxin is the active species for cytochrome c reduction, the complex is not sufficient to allow cytochrome P-45011 beta-mediated hydroxylations;adrenodoxin in excess of reductase is required. In the present studies, reduction by NADPH of excess adrenodoxin is shown to occur at a rate sufficient to support both cytochrome P-450 11 beta-mediated hydroxylation of deoxycorticosterone, and cytochrome P-450sec-mediated side chain cleavage of cholesterol. Oxidation-reduction potential and ion effect studies indicate that the mechanism of steroidogenic electron transport involves an adrenodoxin electron "shuttle" rather than a macromolecular complex of reductase, adrenodoxin, and cytochrome. The oxidation-reduction potential of adrenodoxin is shifted about -100 mV when bound to reductase, and reduction of the iron-sulfur protein thus promotes dissociation of the complex. The rate of adrenodoxin reduction is first stimulated, then inhibited by increasing salt; the effect is ion-specific, with Ca2+ approximately Mg2+ greater than Na+ greater than NH/+. Similar ion-specific rate effects are observed for both of the cytochrome P-450-mediated hydroxylations, indicating that the same reduction mechanism is required for these reactions. Increasing salt concentrations caused dissociation of the complex; dissociation of the form of the complex containing reduced adrenodoxin occurred at lower salt concentrations than that containing oxidized adrenodoxin. The order of effectiveness of ions in causing dissociation is the same as the order for stimulation of adrenodoxin reduction, suggesting a dissociation step in the mechanism. This proposed model, together with dissociation constants for the form of the complex containing either oxidized or reduced adrenodoxin, allows accurate prediction of the salt rate effects curve. For all ions, an activity maximum is seen at the ion concentration which produces the largest molar difference between associated-oxidized and dissociated-reduced states, and the model predicts the positions of the maxima for adrenodoxin reduction, 11 beta-hydroxylation, and side chain cleavage. Thus reduction-induced dissociation of adrenodoxin from adrenodoxin reductase appears to be a required step in steroidogenic electron transport by this system, and a role for adrenodoxin as a mobile electron shuttle is proposed.
我们已经证明(西伯特,D.,兰贝斯,D.,和卡明,H.(1978年),《生物化学杂志》253,8355 - 8358),虽然肾上腺铁氧还蛋白还原酶与肾上腺铁氧还蛋白之间的1:1复合物是还原细胞色素c的活性物种,但该复合物不足以进行细胞色素P - 45011β介导的羟基化反应;需要过量的肾上腺铁氧还蛋白。在本研究中,显示NADPH对过量肾上腺铁氧还蛋白的还原速率足以支持细胞色素P - 450 11β介导的脱氧皮质酮羟基化反应以及细胞色素P - 450sec介导的胆固醇侧链裂解反应。氧化还原电位和离子效应研究表明,类固醇生成电子传递机制涉及肾上腺铁氧还蛋白电子“穿梭”,而非还原酶、肾上腺铁氧还蛋白和细胞色素的大分子复合物。当肾上腺铁氧还蛋白与还原酶结合时,其氧化还原电位大约偏移 - 100 mV,因此铁硫蛋白的还原促进了复合物的解离。肾上腺铁氧还蛋白的还原速率首先受到刺激,然后随着盐浓度增加而受到抑制;这种效应具有离子特异性,Ca2 + 约比Mg2 + 更有效,Mg2 + 比Na + 更有效,Na + 比NH4 + 更有效。对于细胞色素P - 450介导的两种羟基化反应都观察到类似的离子特异性速率效应,表明这些反应需要相同的还原机制。盐浓度增加导致复合物解离;含有还原型肾上腺铁氧还蛋白的复合物形式在比含有氧化型肾上腺铁氧还蛋白的复合物更低的盐浓度下发生解离。离子导致解离的有效性顺序与刺激肾上腺铁氧还蛋白还原的顺序相同,表明该机制中存在一个解离步骤。这个提出的模型,连同含有氧化型或还原型肾上腺铁氧还蛋白的复合物形式的解离常数,能够准确预测盐速率效应曲线。对于所有离子,在产生结合氧化态和解离还原态之间最大摩尔差异的离子浓度处观察到活性最大值;该模型预测了肾上腺铁氧还蛋白还原、11β - 羟基化和侧链裂解的最大值位置。因此,肾上腺铁氧还蛋白从肾上腺铁氧还蛋白还原酶上的还原诱导解离似乎是该系统类固醇生成电子传递中的一个必要步骤,并提出了肾上腺铁氧还蛋白作为移动电子穿梭体的作用。