Suppr超能文献

确定控制纳米粒子大小、结构和功能的肽序列效应。

Determining peptide sequence effects that control the size, structure, and function of nanoparticles.

机构信息

Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States.

出版信息

ACS Nano. 2012 Feb 28;6(2):1625-36. doi: 10.1021/nn204600d. Epub 2012 Feb 8.

Abstract

The ability to tune the size, shape, and composition of nanomaterials at length scales <10 nm remains a challenging task. Such capabilities are required to fully realize the application of nanotechnology for catalysis, energy storage, and biomedical technologies. Conversely, nature employs biomacromolecules such as proteins and peptides as highly specific nanoparticle ligands that demonstrate exacting precision over the particle morphology through controlling the biotic/abiotic interface. Here we demonstrate the ability to finely tune the size, surface structure, and functionality of single-crystal Pd nanoparticles between 2 and 3 nm using materials directing peptides. This was achieved by selectively altering the peptide sequence to change the binding motif, which in turn modifies the surface structure of the particles. The materials were fully characterized before and after reduction using atomically resolved spectroscopic and microscopic analyses, which indicated that the coordination environment prior to reduction significantly affects the structure of the final nanoparticles. Additionally, changes to the particle surface structure, as a function of peptide sequence, can allow for chloride ion coordination that alters the catalytic abilities of the materials for the C-C coupling Stille reaction. These results suggest that peptide-based approaches may be able to achieve control over the structure/function relationship of nanomaterials where the peptide sequence could be used to selectivity tune such capabilities.

摘要

将纳米材料的尺寸、形状和组成在 <10nm 的长度尺度上进行调谐仍然是一项具有挑战性的任务。为了充分实现纳米技术在催化、储能和生物医学技术中的应用,需要具备这种能力。相反,自然界利用生物大分子(如蛋白质和肽)作为高度特异的纳米颗粒配体,通过控制生物/非生物界面,对颗粒形态表现出极高的精确性。在这里,我们展示了使用材料导向肽精细调谐 2 至 3nm 范围内单晶 Pd 纳米颗粒的尺寸、表面结构和功能的能力。通过选择性地改变肽序列来改变结合基序,从而改变颗粒的表面结构,从而实现了这一目标。在使用原子分辨光谱和显微镜分析进行还原前后对材料进行了充分的表征,这表明还原前的配位环境显著影响最终纳米颗粒的结构。此外,作为肽序列的函数,颗粒表面结构的变化可以允许氯离子配位,从而改变材料对 C-C 偶联 Stille 反应的催化能力。这些结果表明,基于肽的方法可能能够实现对纳米材料的结构/功能关系的控制,其中肽序列可用于选择性地调整这些能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验