Suppr超能文献

一种用于去除 fMRI/EEG 研究中记录的 EEG 伪影的稳健算法。

A robust algorithm for removing artifacts in EEG recorded during FMRI/EEG study.

机构信息

Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.

出版信息

Comput Biol Med. 2012 Apr;42(4):458-67. doi: 10.1016/j.compbiomed.2011.12.014. Epub 2012 Jan 25.

Abstract

The main purpose of this study was to propose a robust algorithm for removing artifacts from the electroencephalographic (EEG) data collected during magnetic resonance imaging (MRI). The core idea of the proposed method was to remove the main gradient artifacts by the maximum cross-correlation method and to remove the residual artifacts by the rolling-ball algorithm and lowpass filtering. The results showed that the proposed algorithm had a better performance and was robust in the sense that its performance was maintained when the sampling rate of EEG data was decreased from 10KHz to 200Hz.

摘要

本研究的主要目的是提出一种稳健的算法,以去除磁共振成像(MRI)过程中采集的脑电图(EEG)数据中的伪影。所提出方法的核心思想是通过最大互相关方法去除主要的梯度伪影,并通过滚动球算法和低通滤波去除残余伪影。结果表明,所提出的算法具有更好的性能,并且在 EEG 数据的采样率从 10kHz 降低到 200Hz 时,其性能仍能保持稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验