VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
Neuroimage. 2012 Jan 2;59(1):399-403. doi: 10.1016/j.neuroimage.2011.07.021. Epub 2011 Jul 19.
The analysis of simultaneous EEG and fMRI data is generally based on the extraction of regressors of interest from the EEG, which are correlated to the fMRI data in a general linear model setting. In more advanced approaches, the spatial information of EEG is also exploited by assuming underlying dipole models. In this study, we present a semi automatic and efficient method to determine electrode positions from electrode gel artifacts, facilitating the integration of EEG and fMRI in future EEG/fMRI data models. In order to visualize all electrode artifacts simultaneously in a single view, a surface rendering of the structural MRI is made using a skin triangular mesh model as reference surface, which is expanded to a "pancake view". Then the electrodes are determined with a simple mouse click for each electrode. Using the geometry of the skin surface and its transformation to the pancake view, the 3D coordinates of the electrodes are reconstructed in the MRI coordinate frame. The electrode labels are attached to the electrode positions by fitting a template grid of the electrode cap in which the labels are known. The correspondence problem between template and sample electrodes is solved by minimizing a cost function over rotations, shifts and scalings of the template grid. The crucial step here is to use the solution of the so-called "Hungarian algorithm" as a cost function, which makes it possible to identify the electrode artifacts in arbitrary order. The template electrode grid has to be constructed only once for each cap configuration. In our implementation of this method, the whole procedure can be performed within 15 min including import of MRI, surface reconstruction and transformation, electrode identification and fitting to template. The method is robust in the sense that an electrode template created for one subject can be used without identification errors for another subject for whom the same EEG cap was used. Furthermore, the method appears to be robust against spurious or missing artifacts. We therefore consider the proposed method as a useful and reliable tool within the larger toolbox required for the analysis of co-registered EEG/fMRI data.
同时分析 EEG 和 fMRI 数据通常基于从 EEG 中提取与 fMRI 数据在广义线性模型设置中相关的回归器。在更先进的方法中,还通过假设潜在的偶极子模型来利用 EEG 的空间信息。在这项研究中,我们提出了一种半自动且高效的方法,从电极凝胶伪影中确定电极位置,从而促进未来 EEG/fMRI 数据模型中 EEG 和 fMRI 的整合。为了在单个视图中同时可视化所有电极伪影,使用皮肤三角网格模型作为参考表面对结构 MRI 进行表面渲染,该模型扩展为“薄饼视图”。然后,通过对每个电极进行简单的鼠标点击来确定电极。利用皮肤表面的几何形状及其到薄饼视图的变换,将电极的 3D 坐标重建到 MRI 坐标系中。通过拟合已知标签的电极帽模板网格,将电极标签附加到电极位置。通过最小化模板网格的旋转、平移和缩放的代价函数来解决模板和样本电极之间的对应问题。这里的关键步骤是使用所谓的“匈牙利算法”的解作为代价函数,这使得可以任意顺序识别电极伪影。对于每个帽配置,只需为模板电极网格构建一次。在我们的方法实现中,整个过程可以在 15 分钟内完成,包括 MRI 的导入、表面重建和变换、电极识别以及与模板的拟合。该方法具有鲁棒性,即对于使用相同 EEG 帽的另一个受试者,可以使用为一个受试者创建的电极模板,而不会出现识别错误。此外,该方法似乎对虚假或缺失的伪影具有鲁棒性。因此,我们认为该方法是分析配准 EEG/fMRI 数据所需的更大工具包中的有用且可靠的工具。