Suppr超能文献

桌首:标记物体的“前”与选择紧密相关。

The head of the table: marking the "front" of an object is tightly linked with selection.

机构信息

Department of Psychology, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Neurosci. 2012 Jan 25;32(4):1408-12. doi: 10.1523/JNEUROSCI.4185-11.2012.

Abstract

Objects in the world do not have a surface that can be objectively labeled the "front." We impose this designation on one surface of an object according to several cues, including which surface is associated with the most task-relevant information or the direction of motion of an object. However, when these cues are competing, weak, or absent, we can also flexibly assign one surface as the front. One possibility is that this assignment is guided by the location of the "spotlight" of selection, where the selected region becomes the front. Here we used an electrophysiological correlate to show a direct temporal link between object structure assignments and the spatial locus of selection. We found that when human participants viewed a shape whose front and back surfaces were ambiguous, seeing a given surface as front was associated with selectively attending to that location. In Experiment 1, this pattern occurred during directed rapid (every 1 s) switches in structural percepts. In Experiment 2, this pattern occurred during spontaneous reversals, from 900 ms before to 600 ms after the reported percept. These results suggest that the distribution of selective attention might guide the organization of object structure.

摘要

世界中的物体没有一个可以客观地被标记为“正面”的表面。我们根据几个线索将这个指定赋予物体的一个表面,包括哪个表面与最相关的任务信息相关联,或者物体的运动方向。然而,当这些线索相互竞争、较弱或不存在时,我们也可以灵活地将一个表面指定为正面。一种可能性是,这种分配是由选择的“聚光灯”的位置指导的,被选中的区域成为正面。在这里,我们使用一种电生理相关性来显示物体结构分配和选择的空间位置之间的直接时间联系。我们发现,当人类参与者观察一个正面和背面表面都不确定的形状时,将某个表面视为正面与选择性地关注该位置有关。在实验 1 中,这种模式发生在结构感知的定向快速(每 1 秒)切换期间。在实验 2 中,这种模式发生在自发反转期间,从报告的感知前 900 毫秒到后 600 毫秒。这些结果表明,选择性注意的分布可能指导物体结构的组织。

相似文献

1
The head of the table: marking the "front" of an object is tightly linked with selection.
J Neurosci. 2012 Jan 25;32(4):1408-12. doi: 10.1523/JNEUROSCI.4185-11.2012.
2
Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing.
Brain Res. 2008 Dec 15;1245:116-25. doi: 10.1016/j.brainres.2008.09.092. Epub 2008 Oct 15.
3
Shape-selective stereo processing in human object-related visual areas.
Hum Brain Mapp. 2002 Feb;15(2):67-79. doi: 10.1002/hbm.10008.
4
Seeing without knowing: task relevance dissociates between visual awareness and recognition.
Ann N Y Acad Sci. 2015 Mar;1339:125-37. doi: 10.1111/nyas.12673. Epub 2015 Feb 25.
5
Coherent natural scene structure facilitates the extraction of task-relevant object information in visual cortex.
Neuroimage. 2021 Oct 15;240:118365. doi: 10.1016/j.neuroimage.2021.118365. Epub 2021 Jul 4.
6
Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
Neuropsychologia. 2008;46(7):2071-8. doi: 10.1016/j.neuropsychologia.2008.02.007. Epub 2008 Feb 13.
8
Category-selective areas in human visual cortex exhibit preferences for stimulus depth.
Neuroimage. 2019 Aug 1;196:289-301. doi: 10.1016/j.neuroimage.2019.04.025. Epub 2019 Apr 9.
9
Random visual noise impairs object-based attention.
Exp Brain Res. 2002 Feb;142(3):349-53. doi: 10.1007/s00221-001-0899-2. Epub 2001 Dec 14.

引用本文的文献

1
Exogenous spatial attention shortens perceived depth.
Psychon Bull Rev. 2020 Aug;27(4):716-723. doi: 10.3758/s13423-020-01724-9.
2
Feature-based attention resolves depth ambiguity.
Psychon Bull Rev. 2017 Jun;24(3):804-809. doi: 10.3758/s13423-016-1155-x.
3
Capacity for Visual Features in Mental Rotation.
Psychol Sci. 2015 Aug;26(8):1241-51. doi: 10.1177/0956797615585002. Epub 2015 Jul 14.
4
The allocation of attention and working memory in visual crowding.
J Cogn Neurosci. 2015 Jun;27(6):1180-93. doi: 10.1162/jocn_a_00771. Epub 2014 Dec 16.
5
Shifting selection may control apparent motion.
Psychol Sci. 2013 Jul 1;24(7):1368-70. doi: 10.1177/0956797612471685. Epub 2013 May 14.
6
Asymmetric coding of categorical spatial relations in both language and vision.
Front Psychol. 2012 Nov 20;3:464. doi: 10.3389/fpsyg.2012.00464. eCollection 2012.

本文引用的文献

1
Flexible visual processing of spatial relationships.
Cognition. 2012 Feb;122(2):210-27. doi: 10.1016/j.cognition.2011.11.002. Epub 2011 Nov 26.
2
Rapid eye-fixation training without eyetracking.
Psychon Bull Rev. 2009 Jun;16(3):491-6. doi: 10.3758/PBR.16.3.491.
3
On the give and take between event apprehension and utterance formulation.
J Mem Lang. 2007 Nov;57(4):544-569. doi: 10.1016/j.jml.2007.01.007.
4
Neuroimaging studies of mental rotation: a meta-analysis and review.
J Cogn Neurosci. 2008 Jan;20(1):1-19. doi: 10.1162/jocn.2008.20013.
5
Common neural substrates for the control and effects of visual attention and perceptual bistability.
Brain Res Cogn Brain Res. 2005 Jun;24(1):97-108. doi: 10.1016/j.cogbrainres.2004.12.008.
9
Neural mechanisms of selective visual attention.
Annu Rev Neurosci. 1995;18:193-222. doi: 10.1146/annurev.ne.18.030195.001205.
10
Visual attention to surfaces in three-dimensional space.
Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11155-9. doi: 10.1073/pnas.92.24.11155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验