Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130, USA.
Exp Neurol. 2012 Apr;234(2):428-36. doi: 10.1016/j.expneurol.2012.01.012. Epub 2012 Jan 17.
Three glutamate transporters, GLT-1, GLAST, and EAAC1, are expressed in striatum. GLT-1 and, to a lesser extent, GLAST are thought to play a primary role in glutamate reuptake and mitigate excitoxicity. Progressive tyrosine hydroxylase (TH) loss seen in Parkinson's disease (PD) is associated with increased extracellular glutamate. Glutamate receptor antagonists reduce nigrostriatal loss in PD models. These observations suggest that excess synaptic glutamate contributes to nigrostriatal neuron loss seen in PD. Decreased GLT-1 expression occurs in neurodegenerative disease and PD models, suggesting decreased GLT-1-mediated glutamate reuptake contributes to excitotoxicity. To determine how transient GLT-1 blockade affects glutamate reuptake dynamics and a Ca(2+)-dependent process in nigrostriatal terminals, ser(19) phosphorylation of TH, the GLT-1 inhibitor dihydrokainic acid (DHK) was delivered unilaterally to striatum in vivo and glutamate reuptake was quantified ex vivo in crude synaptosomes 3h later. Ca(2+)-influx is associated with excitotoxic conditions. The phosphorylation of TH at ser(19) is Ca(2+)-dependent, and a change resulting from GLT-1 blockade may signify the potential for excitotoxicity to nigrostriatal neurons. Synaptosomes from DHK infused striatum had a 43% increase in glutamate reuptake in conjunction with decreased ser(19) TH phosphorylation. Using a novel GLAST inhibitor and DHK, we determined that the GLAST-mediated component of increased glutamate reuptake increased 3-fold with no change in GLAST or GLT-1 protein expression. However, GLT-1 blockade increased EAAC1 protein expression ~20%. Taken together, these results suggest that GLT-1 blockade produces a transient increase in GLAST-mediated reuptake and EAAC1 expression coupled with reduced ser(19) TH phosphorylation. These responses could represent an endogenous defense against excitotoxicity to the nigrostriatal pathway.
三种谷氨酸转运体,即 GLT-1、GLAST 和 EAAC1,在纹状体中表达。GLT-1 和在较小程度上的 GLAST 被认为在谷氨酸重摄取中起主要作用,并减轻兴奋性毒性。帕金森病 (PD) 中观察到的进行性酪氨酸羟化酶 (TH) 丧失与细胞外谷氨酸增加有关。谷氨酸受体拮抗剂可减少 PD 模型中的黑质纹状体损失。这些观察结果表明,过量的突触谷氨酸有助于 PD 中黑质纹状体神经元的丧失。神经退行性疾病和 PD 模型中 GLT-1 表达降低,表明 GLT-1 介导的谷氨酸重摄取减少导致兴奋性毒性。为了确定瞬时 GLT-1 阻断如何影响黑质纹状体末梢中的谷氨酸重摄取动力学和 Ca(2+)依赖性过程,体内单侧向纹状体递送 GLT-1 抑制剂二氢海因酸 (DHK),并在 3 小时后在粗突触体中体外定量测定谷氨酸重摄取。Ca(2+) 内流与兴奋性毒性条件有关。TH 丝氨酸 (19) 磷酸化与 Ca(2+) 有关,GLT-1 阻断引起的变化可能表明黑质纹状体神经元发生兴奋性毒性的潜力。来自 DHK 输注纹状体的突触体的谷氨酸摄取增加了 43%,同时 TH 丝氨酸 (19) 的磷酸化减少。使用新型 GLAST 抑制剂和 DHK,我们确定增加的谷氨酸摄取的 GLAST 介导成分增加了 3 倍,而 GLAST 或 GLT-1 蛋白表达没有变化。然而,GLT-1 阻断增加了 EAAC1 蛋白表达约 20%。总之,这些结果表明,GLT-1 阻断会产生短暂的 GLAST 介导的摄取增加和 EAAC1 表达增加,同时伴有 TH 丝氨酸 (19) 的磷酸化减少。这些反应可能代表对黑质纹状体通路兴奋性毒性的内源性防御。