Suppr超能文献

原代肺泡上皮细胞牵张过程中的 Rho 激酶信号通路。

Rho kinase signaling pathways during stretch in primary alveolar epithelia.

机构信息

Department of Bioengineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA 19104-6321, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L992-1002. doi: 10.1152/ajplung.00175.2011. Epub 2012 Jan 27.

Abstract

Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.

摘要

肺泡上皮细胞 (AEC) 通过与肌动蛋白锚定的细胞间紧密连接来维持血-气屏障的完整性。拉伸的 I 型样 AEC 经历幅度和频率依赖性的肌动蛋白细胞骨架重塑为周细胞肌动蛋白环。基于已发表的人肺动脉内皮细胞 (HPAEC) 的研究,我们假设在拉伸的 I 型样 AEC 中,RhoA 活性、Rho 激酶 (ROCK) 活性和肌球蛋白轻链 II (MLC2) 的磷酸化增加的方式依赖于拉伸幅度,并且 RhoA、ROCK 或 MLC2 活性抑制将减弱拉伸诱导的肌动蛋白重塑并维持屏障特性。将 I 型样 AEC 单层以 0.25 Hz 的频率周期性地双向拉伸,以将表面积变化 (ΔSA) 增加 12%、25%或 37%,持续 60 分钟或不拉伸。还将 I 型样 AEC 用 Rho 通路抑制剂 (ML-7、Y-27632 或 blebbistatin) 处理并用 F-肌动蛋白染色或用肌球蛋白磷酸酶抑制剂 calyculin-A 处理并量化单层通透性。与我们的假设相反,在拉伸至 25%和 37%ΔSA 的 I 型样 AEC 中,ROCK 活性和 MLC2 磷酸化降低,而在拉伸至 12%ΔSA 的单层中没有变化。此外,在拉伸至 37%ΔSA 的 I 型样 AEC 中,RhoA 活性降低。相比之下,当 HPAEC 拉伸至 12%ΔSA 时,HPAEC 中的 MLC2 磷酸化增加,但当拉伸至 37%ΔSA 时,MLC2 磷酸化降低,类似于 I 型样 AEC。在用 Rho 通路抑制剂 blebbistatin 处理的未拉伸的 I 型样 AEC 中观察到周细胞肌动蛋白环。肌球蛋白磷酸酶抑制增加了拉伸的 I 型样 AEC 中的 MLC2 磷酸化,但对单层通透性没有影响。总之,拉伸以依赖于拉伸幅度和细胞类型的方式改变 RhoA 活性、ROCK 活性和 MLC2 磷酸化。

相似文献

1
Rho kinase signaling pathways during stretch in primary alveolar epithelia.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L992-1002. doi: 10.1152/ajplung.00175.2011. Epub 2012 Jan 27.
2
Stretch magnitude and frequency-dependent actin cytoskeleton remodeling in alveolar epithelia.
Am J Physiol Cell Physiol. 2010 Aug;299(2):C345-53. doi: 10.1152/ajpcell.00379.2009. Epub 2010 Jun 2.
3
Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells.
Am J Physiol Lung Cell Mol Physiol. 2013 Jul 15;305(2):L141-53. doi: 10.1152/ajplung.00298.2012. Epub 2013 May 17.
4
Pharmacological control of angiogenesis by regulating phosphorylation of myosin light chain 2.
Cell Signal. 2024 Aug;120:111223. doi: 10.1016/j.cellsig.2024.111223. Epub 2024 May 8.
5
Frequency and peak stretch magnitude affect alveolar epithelial permeability.
Eur Respir J. 2008 Oct;32(4):854-61. doi: 10.1183/09031936.00141007. Epub 2008 Jul 9.
6
RhoA and Rho-kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability.
Am J Physiol Lung Cell Mol Physiol. 2005 Feb;288(2):L294-306. doi: 10.1152/ajplung.00213.2004. Epub 2004 Oct 8.
7
Organized migration of epithelial cells requires control of adhesion and protrusion through Rho kinase effectors.
Am J Physiol Gastrointest Liver Physiol. 2007 Mar;292(3):G806-17. doi: 10.1152/ajpgi.00333.2006. Epub 2006 Nov 30.
8
Stretch increases alveolar epithelial permeability to uncharged micromolecules.
Am J Physiol Cell Physiol. 2006 Apr;290(4):C1179-88. doi: 10.1152/ajpcell.00355.2004. Epub 2005 Nov 9.
9
PKC-β exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway.
J Cereb Blood Flow Metab. 2013 Dec;33(12):1928-36. doi: 10.1038/jcbfm.2013.151. Epub 2013 Aug 21.
10
cGMP signaling inhibits platelet shape change through regulation of the RhoA-Rho Kinase-MLC phosphatase signaling pathway.
J Thromb Haemost. 2017 Aug;15(8):1668-1678. doi: 10.1111/jth.13738. Epub 2017 Jul 18.

引用本文的文献

1
The Epithelial Cell Leak Pathway.
Int J Mol Sci. 2021 Jul 18;22(14):7677. doi: 10.3390/ijms22147677.
2
Multiscale dynamics of tight junction remodeling.
J Cell Sci. 2019 Nov 21;132(22):jcs229286. doi: 10.1242/jcs.229286.
3
Role of MicroRNA in the Lung's Innate Immune Response.
J Innate Immun. 2017;9(3):243-249. doi: 10.1159/000452669. Epub 2016 Dec 3.
4
Local influence of cell viability on stretch-induced permeability of alveolar epithelial cell monolayers.
Cell Mol Bioeng. 2016 Mar 1;9(1):65-72. doi: 10.1007/s12195-015-0405-8. Epub 2015 Jul 8.
5
Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch.
J Biol Chem. 2016 May 6;291(19):10032-45. doi: 10.1074/jbc.M115.690487. Epub 2016 Feb 16.
6
Coming to terms with tissue engineering and regenerative medicine in the lung.
Am J Physiol Lung Cell Mol Physiol. 2015 Oct 1;309(7):L625-38. doi: 10.1152/ajplung.00204.2015. Epub 2015 Aug 7.
7
Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function.
Nat Mater. 2015 Oct;14(10):1049-57. doi: 10.1038/nmat4358. Epub 2015 Jul 27.
8
Ibuprofen protects ventilator-induced lung injury by downregulating Rho-kinase activity in rats.
Biomed Res Int. 2014;2014:749097. doi: 10.1155/2014/749097. Epub 2014 Jun 12.
9
Folliculin controls lung alveolar enlargement and epithelial cell survival through E-cadherin, LKB1, and AMPK.
Cell Rep. 2014 Apr 24;7(2):412-423. doi: 10.1016/j.celrep.2014.03.025. Epub 2014 Apr 13.

本文引用的文献

1
Stretch magnitude and frequency-dependent actin cytoskeleton remodeling in alveolar epithelia.
Am J Physiol Cell Physiol. 2010 Aug;299(2):C345-53. doi: 10.1152/ajpcell.00379.2009. Epub 2010 Jun 2.
3
TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation.
Cancer Res. 2009 Oct 1;69(19):7851-9. doi: 10.1158/0008-5472.CAN-08-4002. Epub 2009 Sep 22.
4
Quantifying Western blots: pitfalls of densitometry.
Electrophoresis. 2009 Jun;30(11):1845-55. doi: 10.1002/elps.200800720.
6
Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.
PLoS One. 2009;4(5):e5486. doi: 10.1371/journal.pone.0005486. Epub 2009 May 8.
8
Stimulated calcium entry and constitutive RhoA kinase activity cause stretch-induced detrusor contraction.
Eur J Pharmacol. 2008 Dec 3;599(1-3):137-45. doi: 10.1016/j.ejphar.2008.09.045. Epub 2008 Oct 8.
9
Myosin phosphorylation triggers actin polymerization in vascular smooth muscle.
Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2172-7. doi: 10.1152/ajpheart.91437.2007. Epub 2008 Oct 3.
10
Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels.
Exp Cell Res. 2008 Nov 15;314(19):3466-77. doi: 10.1016/j.yexcr.2008.09.003. Epub 2008 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验