Suppr超能文献

细胞骨架机械反应中的强化与流化

Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

作者信息

Krishnan Ramaswamy, Park Chan Young, Lin Yu-Chun, Mead Jere, Jaspers Richard T, Trepat Xavier, Lenormand Guillaume, Tambe Dhananjay, Smolensky Alexander V, Knoll Andrew H, Butler James P, Fredberg Jeffrey J

机构信息

Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2009;4(5):e5486. doi: 10.1371/journal.pone.0005486. Epub 2009 May 8.

Abstract

Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

摘要

每个贴壁真核细胞都会对其底物施加可观的牵引力。此外,心脏、大血管、膀胱、肠道或肺部的每个驻留细胞通常都会经历大幅度的周期性拉伸。据一些报道,作为对这种拉伸的急性反应,细胞骨架会变硬、增加牵引力并得到加强;而据我们实验室最近的报道,细胞骨架也可能变软并流化,但在任何特定情况下,究竟哪种反应会占主导或原因尚不清楚。利用一种新型纳米技术,我们在此表明,在大多数生理情况下预期的加载条件下,局部增强反应无法扩大到均匀细胞拉伸的水平;流化胜过增强。虽然已知增强反应是由上游机械传感和下游信号传导介导的,但此处呈现的结果表明流化反应是全新的:它是机械力作用于柔软且脆弱的结构晶格的直接物理效应。我们认为,细胞骨架的柔软性和脆弱性与真核细胞早期对柔软惰性微环境物质特性的进化适应是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e86/2675060/bdba643bcb70/pone.0005486.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验