Lutchen K R
Department of Biomedical Engineering, Boston University, Massachusetts 02215.
J Appl Physiol (1985). 1990 Aug;69(2):766-75. doi: 10.1152/jappl.1990.69.2.766.
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
本文提出了一种基于加权最小二乘回归的敏感性分析方法,用于评估将集总参数模型拟合到呼吸阻抗数据的替代方法。目标是在实际实验设计的同时保持参数准确性。该分析重点在于使用联合置信区域的线性化近似来预测参数不确定性。应用包括针对0.125至4 Hz数据的四元件并联和粘弹性模型,以及针对2至64 Hz输入和传递阻抗数据的具有单独组织和气道特性的六元件模型。通过比较将数据拟合为幅度和相位、动态电阻和顺应性或输入阻抗的实部和虚部时的参数不确定性,对准则函数形式进行了评估。加权的适当选择可以使所有三个准则变量具有可比性。对于六元件模型,当同时获取并拟合输入阻抗和传递阻抗时,预测了参数不确定性。对4至64 Hz的两个数据集进行拟合可以显著降低参数估计的不确定性,相比单独拟合其中任何一个数据集时可实现的不确定性。对于四元件模型,评估了使用独立但有噪声的静态顺应性测量作为对模型参数的约束。这可能允许在最低频率为0.275至0.375 Hz而非0.125 Hz时获得可接受的参数不确定性。这将数据采集要求从16秒的屏气时间减少到5.33至8秒。这些结果是近似值,并讨论了对置信区域使用线性化近似的影响。