Suppr超能文献

时间分辨渐发性氮饥饿及其对集胞藻 PCC 6803 光合作用的影响。

Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803.

机构信息

Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.

出版信息

Physiol Plant. 2012 Jul;145(3):426-39. doi: 10.1111/j.1399-3054.2012.01585.x. Epub 2012 Mar 14.

Abstract

Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h, the transcriptome showed activation of nitrogen uptake and assimilation systems and of the core nitrogen and carbon assimilation regulators. However, the nitrogen-deprived cells still grew at the same rate as the control and even showed transiently increased expression of phycobilisome genes. After 12 h, cell growth decreased and chlorosis started with degradation of the nitrogen-rich phycobilisomes. During this phase, the transcriptome showed suppression of genes for phycobilisomes, for carbon fixation and for de novo protein synthesis. Interestingly, photosynthetic activity of both photosystem I (PSI) and photosystem II was retained quite well. Excess electrons were quenched by the induction of terminal oxidase and hydrogenase genes, compensating for the diminished carbon fixation and nitrate reduction activity. After 48 h, the cells ceased most activities. A marked exception was the retained PSI gene transcription, possibly this supports the viability of Synechocystis cells and enables rapid recovery after relieving from nitrogen starvation. During early recovery, many genes changed expression, supporting the resumed cellular activity. In total, our results distinguished three phases during gradual nitrogen depletion: (1) an immediate response, (2) short-term acclimation and (3) long-term survival. This shows that cyanobacteria respond to nitrogen starvation by a cascade of physiological adaptations reflected by numerous changes in the transcriptome unfolding at different timescales.

摘要

连续适应氮饥饿并最终完全饥饿需要细胞功能的协调调整。我们研究了蓝藻集胞藻 PCC 6803 在 96 小时氮饥饿期间的基因表达和细胞生理变化。在最初的 6 小时内,转录组显示氮吸收和同化系统以及核心氮和碳同化调节剂的激活。然而,氮饥饿的细胞仍以与对照相同的速度生长,甚至表现出藻胆体基因的短暂表达增加。12 小时后,细胞生长下降,叶绿体开始退化,同时氮丰富的藻胆体降解。在这个阶段,转录组显示藻胆体、碳固定和从头蛋白质合成的基因受到抑制。有趣的是,两个光系统 I(PSI)和光系统 II 的光合活性都保持得相当好。多余的电子通过末端氧化酶和氢化酶基因的诱导被淬灭,补偿了减少的碳固定和硝酸盐还原活性。48 小时后,细胞停止了大部分活动。一个明显的例外是 PSI 基因转录的保留,这可能支持集胞藻细胞的存活,并使其能够在从氮饥饿中恢复后迅速恢复。在早期恢复期间,许多基因改变了表达,支持了细胞活动的恢复。总的来说,我们的结果在逐渐耗尽氮的过程中区分了三个阶段:(1)立即反应,(2)短期适应和(3)长期存活。这表明,蓝藻通过一系列生理适应来应对氮饥饿,这些适应反映在不同时间尺度上展开的转录组中许多变化上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验