Suppr超能文献

A new approach to the detection of lesions in mammography using fuzzy clustering.

作者信息

Wang Y, Shi H, Ma S

机构信息

Room 631, Mathematics Building, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

出版信息

J Int Med Res. 2011;39(6):2256-63. doi: 10.1177/147323001103900622.

Abstract

Breast cancer is a leading cause of female mortality and its early detection is an important means of reducing this. The present study investigated an approach, based on fuzzy clustering, to detect small lesions, such as microcalcifications and other masses, that are hard to recognize in breast cancer screening. A total of 180 mammograms were analysed and classified by radiologists into three groups (n = 60 per group): those with microcalcifications; those with tumours; and those with no lesions. Twenty mammograms were taken as training data sets from each of the groups. The algorithm was then applied to the data not taken for training. Analysis by fuzzy clustering achieved a mean accuracy of 99.7% compared with the radiologists' findings. It was concluded that the fuzzy clustering algorithm allowed for more efficient and accurate detection of breast lesions and may improve the early detection of breast tumours.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验