Suppr超能文献

利用贝叶斯推理研究玉米对灰斑病抗性的遗传控制。

Bayesian inference to study genetic control of resistance to gray leaf spot in maize.

作者信息

Balestre M, Von Pinho R G, Brito A H

机构信息

Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil.

出版信息

Genet Mol Res. 2012 Jan 9;11(1):17-29. doi: 10.4238/2012.January.9.3.

Abstract

Gray leaf spot (GLS) is a major maize disease in Brazil that significantly affects grain production. We used Bayesian inference to investigate the nature and magnitude of gene effects related to GLS resistance by evaluation of contrasting lines and segregating populations. The experiment was arranged in a randomized block design with three replications and the mean values were analyzed using a Bayesian shrinkage approach. Additive-dominant and epistatic effects and their variances were adjusted in an over-parametrized model. Bayesian shrinkage analysis showed to be an excellent approach to handle complex models in the study of genetic control in GLS, since this approach allows to handle overparametrized models (main and epistatic effects) without using model-selection methods. Genetic control of GLS resistance was predominantly additive, with insignificant influence of dominance and epistasis effects.

摘要

灰斑病(GLS)是巴西一种主要的玉米病害,严重影响谷物产量。我们通过评估对比品系和分离群体,利用贝叶斯推断来研究与灰斑病抗性相关的基因效应的性质和大小。试验采用随机区组设计,重复三次,并使用贝叶斯收缩方法分析平均值。在一个参数过多的模型中调整了加性-显性和上位性效应及其方差。贝叶斯收缩分析表明,它是研究灰斑病遗传控制中处理复杂模型的一种优秀方法,因为这种方法允许在不使用模型选择方法的情况下处理参数过多的模型(主效应和上位性效应)。灰斑病抗性的遗传控制主要是加性的,显性和上位性效应的影响不显著。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验