Suppr超能文献

地球系统如何产生和维持热力学不平衡,这对地球的未来意味着什么?

How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

机构信息

Biospheric Theory and Modelling Group, Max-Planck-Institut für Biogeochemie, Hans-Knöll-Strasse 10, 07745 Jena, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2012 Mar 13;370(1962):1012-40. doi: 10.1098/rsta.2011.0316.

Abstract

The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would enhance the overall free energy generation and, thereby 'empower' the future of the planet.

摘要

地球的化学成分远非化学平衡,在我们的太阳系中是独一无二的,这种独特性归因于地球上广泛存在的生命。在这里,我展示了如何使用非平衡热力学来量化这种观念。在热力学变量中产生和维持非平衡需要从另一个热力学梯度中提取能量,热力学第二定律对可以提取多少能量施加了基本限制。通过这种方法和相关限制,我表明,非生物过程产生可以用于转化表面-大气环境的地球化学自由能的能力受到强烈限制,不到 1 TW。光合作用生命通过进行光化学产生超过 200 TW 的能量,从而证实了地球化学组成远非平衡可以是强烈生物活动的标志。目前,以工业活动和人类占用的净初级生产力形式的人类活动的自由能消耗约为 50 TW,因此构成了地球自由能预算中的一个重要部分。在预测地球的未来时,我们首先注意到,由于全球变化与这种自由能消耗密切相关,并且预计人类活动对自由能的需求将在未来大幅增加,因此,在预测未来全球变化的背景下,核心问题是人类如何在不影响地球系统产生自由能的能力的情况下可持续地增加自由能需求。这个问题可以用气候模型来评估,并且讨论了这些模型在充分代表地球系统热力学方面的潜在缺陷。然后,我通过讨论可再生能源和行星工程的形式来阐述这种热力学观点的含义,这些形式将提高整体自由能的产生,从而“赋予”地球的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a08/3261436/21a05526659c/rsta20110316-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验