Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
J Cereb Blood Flow Metab. 2012 Apr;32(4):745-58. doi: 10.1038/jcbfm.2011.198. Epub 2012 Feb 1.
The dynamic properties of the cerebral metabolic rate of oxygen consumption (CMR(O2)) during changes in brain activity remain unclear. Therefore, the spatial and temporal evolution of functional increases in CMR(O2) was investigated in the rat somato-sensory cortex during forelimb stimulation under a suppressed blood flow response condition. Temporally, stimulation elicited a fast increase in tissue mitochondria CMR(O2) described by a time constant of ~1 second measured using flavoprotein autofluorescence imaging. CMR(O2)-driven changes in the tissue oxygen tension measured using an oxygen electrode and blood oxygenation measured using optical imaging of intrinsic signal followed; however, these changes were slow with time constants of ~5 and ~10 seconds, respectively. This slow change in CMR(O2)-driven blood oxygenation partly explains the commonly observed post-stimulus blood oxygen level-dependent (BOLD) undershoot. Spatially, the changes in mitochondria CMR(O2) were similar to the changes in blood oxygenation. Finally, the increases in CMR(O2) were well correlated with the evoked multi-unit spiking activity. These findings show that dynamic CMR(O2) calculations made using only blood oxygenation data (e.g., BOLD functional magnetic resonance imaging (fMRI)) do not directly reflect the temporal changes in the tissue's mitochondria metabolic rate; however, the findings presented can bridge the gap between the changes in cellular oxidative rate and blood oxygenation.
大脑氧代谢率(CMR(O2))在大脑活动变化过程中的动态特性尚不清楚。因此,在血流反应受到抑制的条件下,研究了大鼠体感皮层在前肢刺激期间,CMR(O2)功能增加的时空演变。从时间上看,刺激引起组织线粒体 CMR(O2)的快速增加,使用黄素蛋白自发荧光成像测量的时间常数约为 1 秒。随后,使用氧电极测量组织氧分压的变化和使用固有信号的光学成像测量血氧饱和度的变化;然而,这些变化较慢,时间常数分别约为 5 秒和 10 秒。CMR(O2)驱动的这种缓慢的血氧变化部分解释了通常观察到的刺激后血氧水平依赖(BOLD)下冲现象。从空间上看,线粒体 CMR(O2)的变化与血氧饱和度的变化相似。最后,CMR(O2)的增加与诱发的多单位尖峰活动密切相关。这些发现表明,仅使用血氧数据(例如 BOLD 功能磁共振成像(fMRI))进行动态 CMR(O2)计算并不能直接反映组织线粒体代谢率的时间变化;然而,所提出的发现可以弥合细胞氧化率和血氧之间的差距。