Suppr超能文献

用于图像检索和目标分类的稀疏彩色兴趣点。

Sparse color interest points for image retrieval and object categorization.

机构信息

Department of Information Engineering and Computer Science, University of Trento, 38100 Trento, Italy.

出版信息

IEEE Trans Image Process. 2012 May;21(5):2681-92. doi: 10.1109/TIP.2012.2186143. Epub 2012 Jan 26.

Abstract

Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.

摘要

兴趣点检测是图像处理和计算机视觉领域的一个重要研究领域。特别是,图像检索和目标分类严重依赖于从局部图像描述符计算的兴趣点检测,以进行图像匹配。通常,兴趣点基于亮度,而颜色在很大程度上被忽略。然而,使用颜色会增加兴趣点的独特性。因此,使用颜色可以提供选择性搜索,减少用于图像匹配的兴趣点总数。本文提出了用于稀疏图像表示的彩色兴趣点。为了降低对不同成像条件的敏感性,引入了不变光的兴趣点。基于出现概率的颜色统计导致颜色增强点,通过基于显着性的特征选择获得。此外,还提出了一种基于主成分分析的尺度选择方法,该方法为每个兴趣点提供了稳健的尺度估计。从大规模实验中可以看出,与基于亮度的兴趣点检测器相比,所提出的彩色兴趣点检测器具有更高的重复性。此外,在图像检索的上下文中,与最先进的兴趣点相比,减少和可预测的彩色特征数量会提高性能。最后,在对象识别的上下文中,对于 Pascal VOC 2007 挑战赛,我们的方法使用特征的一小部分就可以达到与最先进方法相当的性能,大大减少了计算时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验