Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
Phys Chem Chem Phys. 2012 Mar 7;14(9):3234-47. doi: 10.1039/c2cp23693a. Epub 2012 Jan 31.
The dissociation of H(2) on Ti-covered Al surfaces is relevant to the rehydrogenation and dehydrogenation of the NaAlH(4) hydrogen storage material. The energetically most stable structure for a 1/2 monolayer of Ti deposited on the Al(100) surface has the Ti atoms in the second layer with a c(2 × 2) structure, as has been confirmed by both low-energy electron diffraction and low-energy ion scattering experiments and density functional theory studies. In this work, we investigate the dynamics of H(2) dissociation on a slab model of this Ti/Al(100) surface. Two six-dimensional potential energy surfaces (PESs) have been built for this H(2) + Ti/Al(100) system, based on the density functional theory PW91 and RPBE exchange-correlation functionals. In the PW91 (RPBE) PES, the lowest H(2) dissociation barrier is found to be 0.65 (0.84) eV, with the minimum energy path occurring for H(2) dissociating above the bridge to top sites. Using both PESs, H(2) dissociation probabilities are calculated using the classical trajectory (CT), the quasi-classical trajectory (QCT), and the time-dependent wave-packet methods. We find that the QCT H(2) dissociation probabilities are in good agreement with the quantum dynamics results in the collision energy range studied up to 1.0 eV. We have also performed molecular beam simulations and present predictions for molecular beam experiments. Our molecular beam simulations show that H(2) dissociation on the 1/2 ML Ti/Al(100) surface is an activated process, and the reaction probability is found to be 6.9% for the PW91 functional and 1.8% for the RPBE at a nozzle temperature of 1700 K. Finally, we have also calculated H(2) dissociation rate constants by applying transition state theory and the QCT method, which could be relevant to modeling Ti-catalyzed rehydrogenation and dehydrogenation of NaAlH(4).
氢在钛覆盖的铝表面上的离解与 NaAlH(4)储氢材料的再氢化和脱氢有关。在 Al(100)表面上沉积 1/2 单层 Ti 的最稳定结构是 Ti 原子位于第二层,具有 c(2×2)结构,这已被低能电子衍射和低能离子散射实验以及密度泛函理论研究证实。在这项工作中,我们研究了 H(2)在 Ti/Al(100)表面的薄片模型上的离解动力学。基于密度泛函理论 PW91 和 RPBE 交换相关泛函,为 H(2)+Ti/Al(100)系统构建了两个六维势能面(PES)。在 PW91(RPBE)PES 中,发现 H(2)离解的最低能垒为 0.65(0.84)eV,最小能量路径发生在 H(2)在桥到顶位之间离解。使用这两个 PES,使用经典轨迹(CT)、准经典轨迹(QCT)和时变波包方法计算了 H(2)的离解概率。我们发现,在研究的碰撞能范围内,QCT 的 H(2)离解概率与量子动力学结果非常吻合,最高可达 1.0 eV。我们还进行了分子束模拟,并对分子束实验进行了预测。我们的分子束模拟表明,1/2 ML Ti/Al(100)表面上的 H(2)离解是一个活化过程,在喷嘴温度为 1700 K 时,PW91 函数的反应概率为 6.9%,而 RPBE 的反应概率为 1.8%。最后,我们还通过应用过渡态理论和 QCT 方法计算了 H(2)的离解速率常数,这可能与 Ti 催化的 NaAlH(4)再氢化和脱氢的建模有关。