Suppr超能文献

受初级视觉皮层观察结果启发的从自然图像中学习不变性。

Learning invariance from natural images inspired by observations in the primary visual cortex.

机构信息

Chemnitz University of Technology, 09107 Chemnitz, Germany.

出版信息

Neural Comput. 2012 May;24(5):1271-96. doi: 10.1162/NECO_a_00268. Epub 2012 Feb 1.

Abstract

The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.

摘要

人类视觉系统具有很大程度上识别物体的能力,而不考虑其位置、旋转和比例的变化。对神经生物学发现的一个很好的解释涉及到一个模拟视觉皮层信号处理的计算模型。在某种程度上,这可能是从早期到晚期的视觉感知区域逐步实现的。虽然已经提出了几种用于学习特征检测器的算法,但目前只有少数研究涉及到这种不变性的生物上合理的学习。在这项研究中,提出了一组基于钙动力学和单个神经元的动态平衡调节的赫布学习规则。在初级视觉皮层的一个简单模型中,基于一系列静态图像,验证了它们学习所谓的复杂细胞的性能。结果表明,所学习的复杂细胞反应在相位和位置上具有很大的不变性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验