Suppr超能文献

采用第一性原理方法解决代谢部位的实用方法及其对反应性代谢物形成的影响。

A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation.

机构信息

AstraZeneca Research and Development Södertälje, SE-151 85 Södertälje, Sweden.

出版信息

J Chem Inf Model. 2012 Mar 26;52(3):686-95. doi: 10.1021/ci200523f. Epub 2012 Feb 24.

Abstract

A majority of xenobiotics are metabolized by cytochrome P450 (CYP) enzymes. The discovery of drug candidates with low propensity to form reactive metabolites and low clearance can be facilitated by understanding CYP-mediated xenobiotic metabolism. Being able to predict the sites where reactive metabolites form is beneficial in drug design to produce drug candidates free of reactive metabolite issues. Herein, we report a pragmatic protocol using first-principle density functional theory (DFT) calculations for predicting sites of epoxidation and hydroxylation of aromatic substrates mediated by CYP. The method is based on the relative stabilities of the CYP-substrate intermediates or the substrate epoxides. Consequently, it concerns mainly the electronic reactivity of the substrates. Comparing to the experimental findings, the presented protocol gave excellent first-ranked epoxidation site predictions of 83%, and when the test was extended to CYP-mediated sites of aromatic hydroxylation, satisfactory results were also obtained (73%). This indicates that our assumptions are valid and also implies that the intrinsic reactivities of the substrates are in general more important than their binding poses in proteins, although the protocol may benefit from the addition of docking information.

摘要

大多数外源化学物通过细胞色素 P450(CYP)酶代谢。通过了解 CYP 介导的外源化学物代谢,可以促进发现形成反应性代谢物倾向低和清除率低的药物候选物。能够预测形成反应性代谢物的部位有利于药物设计,从而产生无反应性代谢物问题的药物候选物。本文报告了一种实用的协议,使用第一性原理密度泛函理论(DFT)计算来预测 CYP 介导的芳香族底物的环氧化和羟化部位。该方法基于 CYP-底物中间体或底物环氧化物的相对稳定性。因此,它主要涉及底物的电子反应性。与实验结果相比,该方案对 83%的环氧化部位进行了出色的一级预测,当将测试扩展到 CYP 介导的芳香族羟化部位时,也获得了令人满意的结果(73%)。这表明我们的假设是有效的,并且还暗示底物的固有反应性通常比其在蛋白质中的结合构象更为重要,尽管该方案可能受益于对接信息的添加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验