de Visser Sam P, Shaik Sason
Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
J Am Chem Soc. 2003 Jun 18;125(24):7413-24. doi: 10.1021/ja034142f.
Benzene hydroxylation is a fundamental process in chemical catalysis. In nature, this reaction is catalyzed by the enzyme cytochrome P450 via oxygen transfer in a still debated mechanism of considerable complexity. The paper uses hybrid density functional calculations to elucidate the mechanisms by which benzene is converted to phenol, benzene oxide, and ketone, by the active species of the enzyme, the high-valent iron-oxo porphyrin species. The effects of the protein polarity and hydrogen-bonding donation to the active species are mimicked, as before (Ogliaro, F.; Cohen, S.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 12892-12893). It is verified that the reaction does not proceed either by hydrogen abstraction or by initial electron transfer (Ortiz de Montellano, P. R. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; Chapter 8, pp 245-303). In accord with the latest experimental conclusions, the theoretical calculations show that the reactivity is an interplay of electrophilic and radicalar pathways, which involve an initial attack on the pi-system of the benzene to produce sigma-complexes (Korzekwa, K. R.; Swinney, D. C.; Trager, W. T. Biochemistry 1989, 28, 9019-9027). The dominant reaction channel is electrophilic and proceeds via the cationic sigma-complex,( 2)3, that involves an internal ion pair made from a cationic benzene moiety and an anionic iron porphyrin. The minor channel proceeds by intermediacy of the radical sigma-complex, (2)2, in which the benzene moiety is radicalar and the iron-porphyrin moiety is neutral. Ring closure in these intermediates produces the benzene oxide product ((2)4), which does not rearrange to phenol ((2)7) or cyclohexenone ((2)6). While such a rearrangement can occur post-enzymatically under physiological conditions by acid catalysis, the computations reveal a novel mechanism whereby the active species of the enzyme catalyzes directly the production of phenol and cyclohexenone. This enzymatic mechanism involves proton shuttles mediated by the porphyrin ring through the N-protonated intermediate, (2)5, which relays the proton either to the oxygen atom to form phenol ((2)7) or to the ortho-carbon atom to produce cyclohexenone product ((2)6). The formation of the phenol via this proton-shuttle mechanism will be competitive with the nonenzymatic conversion of benzene oxide to phenol by external acid catalysis. With the assumption that (2)5 is not fully thermalized, this novel mechanism would account also for the observation that there is a partial skeletal retention of the original hydrogen of the activated C-H bond, due to migration of the hydrogen from the site of hydroxylation to the adjacent carbon (so-called "NIH shift" (Jerina, D. M.; Daly, J. W. Science 1974, 185, 573-582)). Thus, in general, the computationally discovered mechanism of a porphyrin proton shuttle suggests thatthere is an enzymatic pathway that converts benzene directly to a phenol and ketone, in addition to nonenzymatic production of these species by conversion of arene oxide to phenol and ketone. The potential generality of protonated porphyrin intermediates in P450 chemistry is discussed in the light of the H/D exchange observed during some olefin epoxidation reactions (Groves, J. T.; Avaria-Neisser, G. E.; Fish, K. M.; Imachi, M.; Kuczkowski, R. J. Am. Chem. Soc. 1986, 108, 3837-3838) and the general observation of heme alkylation products (Kunze, K. L.; Mangold, B. L. K.; Wheeler, C.; Beilan, H. S.; Ortiz de Montellano, P. R. J. Biol. Chem. 1983, 258, 4202-4207). The competition, similarities, and differences between benzene oxidation viz. olefin epoxidation and alkanyl C-H hydroxylation are discussed, and comparison is made with relevant experimental and computational data. The dominance of low-spin reactivity in benzene hydroxylation viz. two-state reactivity (Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556-567) in olefin epoxidation and alkane hydroxylation is traced to the loss of benzene resonance energy during the bond activation step.
苯羟基化是化学催化中的一个基本过程。在自然界中,该反应由细胞色素P450酶催化,通过氧转移进行,其机制仍存在很大争议且相当复杂。本文利用杂化密度泛函计算来阐明苯被该酶的活性物种——高价铁氧卟啉物种转化为苯酚、苯氧化物和酮的机制。如前所述(奥利亚罗,F.;科恩,S.;德维瑟,S.P.;沙伊克,S.《美国化学会志》2000年,122卷,12892 - 12893页),模拟了蛋白质极性和氢键供体对活性物种的影响。已证实该反应既不是通过氢提取也不是通过初始电子转移进行的(奥尔蒂斯·德·蒙特利亚诺,P.R.《细胞色素P450:结构、机制与生物化学》,第2版;奥尔蒂斯·德·蒙特利亚诺,P.R.编;普伦纽姆出版社:纽约,1995年;第8章,第245 - 303页)。与最新的实验结论一致,理论计算表明,反应活性是亲电途径和自由基途径的相互作用,这涉及对苯的π体系的初始攻击以产生σ配合物(科尔泽克瓦,K.R.;斯温尼,D.C.;特拉格,W.T.《生物化学》1989年,28卷,9019 - 9027页)。主要反应通道是亲电的,通过阳离子σ配合物(2)3进行,该配合物涉及由阳离子苯部分和阴离子铁卟啉形成的内离子对。次要通道通过自由基σ配合物(2)2进行,其中苯部分是自由基,铁卟啉部分是中性的。这些中间体中的环化产生苯氧化物产物((2)4),其不会重排为苯酚((2)7)或环己烯酮((2)6)。虽然这种重排在生理条件下酶促反应后可通过酸催化发生,但计算揭示了一种新机制,即酶的活性物种直接催化苯酚和环己烯酮的产生。这种酶促机制涉及由卟啉环介导的质子穿梭,通过N - 质子化中间体(2)5,该中间体将质子传递给氧原子形成苯酚((2)7)或传递给邻位碳原子以产生环己烯酮产物((2)6)。通过这种质子穿梭机制形成苯酚将与苯氧化物通过外部酸催化非酶转化为苯酚相竞争。假设(2)5没有完全热化,这种新机制也将解释以下观察结果:由于氢从羟基化位点迁移到相邻碳(所谓的“NIH迁移”(杰里纳,D.M.;戴利,J.W.《科学》1974年,185卷,573 - 582页)),活化的C - H键的原始氢存在部分骨架保留。因此,一般来说,计算发现的卟啉质子穿梭机制表明,除了通过芳烃氧化物转化为苯酚和酮的非酶途径产生这些物种外,还存在一种酶促途径将苯直接转化为苯酚和酮。根据在一些烯烃环氧化反应中观察到的H/D交换(格罗夫斯,J.T.;阿瓦里亚 - 奈塞尔,G.E.;菲什,K.M.;今市,M.;库茨科夫斯基,R.《美国化学会志》1986年,108卷,3837 - 3838页)以及血红素烷基化产物的一般观察结果(昆泽,K.L.;曼戈尔德,B.L.K.;惠勒,C.;贝兰,H.S.;奥尔蒂斯·德·蒙特利亚诺,P.R.《生物化学杂志》1983年,258卷,4202 - 4207页),讨论了P450化学中质子化卟啉中间体的潜在普遍性。讨论了苯氧化与烯烃环氧化和烷烃基C - H羟基化之间的竞争、相似性和差异,并与相关的实验和计算数据进行了比较。苯羟基化中低自旋反应性的主导地位,即烯烃环氧化和烷烃羟基化中的双态反应性(沙伊克,S.;德维瑟,S.P.;奥利亚罗,F.;施瓦茨,H.;施罗德,D.《化学生物学当前观点》2002年,6卷,556 - 567页),可追溯到键活化步骤中苯共振能的损失。