Department of Physics, University of Ioannina, GR-451 10 Ioannina, Epirus, Greece.
J Phys Condens Matter. 2012 Mar 7;24(9):095006. doi: 10.1088/0953-8984/24/9/095006. Epub 2012 Feb 3.
We study the Pb growth on both √3 × √3-In and 4 × 1-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 × √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 × 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 × 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.
我们研究了 Pb 在室温及低温(160K)下在 √3×√3-In 和 4×1-In 重构 Si(111)表面上的生长。这项研究采用了互补技术,以研究衬底重构和温度在确定 Pb 生长模式中的作用。具体而言,我们专注于生长形态和 Pb 薄膜电子结构之间的相关性。信息是通过使用俄歇电子能谱、低能电子衍射、软 X 光光电发射谱、扫描隧道显微镜和点剖面分析-低能电子衍射获得的。结果表明,在低温和覆盖度≤12 ML 的 Si(111)√3×√3-In 表面上,Pb 不会改变衬底的初始半导体特性,并且在湿层上生长出结晶度差的三维 Pb 岛。另一方面,对于相同的覆盖范围,Pb 在 Si(111)4×1-In 表面上的生长导致在完成双层不完全湿层后形成金属 Pb(111)结晶岛。此外,还研究了 adatoms 的键合排列,证实 In adatoms与硅衬底的相互作用比 Pb 强。这促进了更强的 Pb-Pb 相互作用并增强了金属化。金属化的开始与 Si(111)表面上预先沉积的 In 的量有关。Pb 薄膜与 4×1-In 界面的解耦也可以解释在该界面上观察到的均匀高度岛异常热稳定性。这些 Pb 岛的形成是由量子尺寸效应驱动的。最后,Pb 在两种重构表面上的生长结果不同,这证实了界面的重要性,并且生长形态以及 Pb 薄膜的电子结构可以通过初始衬底重构来进行调整。