Suppr超能文献

用于全球健康相关生活质量评估的多层次潜在变量模型。

Multilevel latent variable models for global health-related quality of life assessment.

机构信息

Department of Statistics, Macquarie University, Sydney, NSW, Australia.

出版信息

Stat Med. 2012 May 20;31(11-12):1249-64. doi: 10.1002/sim.4455. Epub 2012 Feb 3.

Abstract

Quality of life (QOL) assessment is a key component of many clinical studies and frequently requires the use of single global summary measures that capture the overall balance of findings from a potentially wide-ranging assessment of QOL issues. We propose and evaluate an irregular multilevel latent variable model suitable for use as a global summary tool for health-related QOL assessments. The proposed model is a multiple indicator and multiple cause style of model with a two-level latent variable structure. We approach the modeling from a general multilevel modeling perspective, using a combination of random and nonrandom cluster types to accommodate the mixture of issues commonly evaluated in health-related QOL assessments--overall perceptions of QOL and health, along with specific psychological, physical, social, and functional issues. Using clinical trial data, we evaluate the merits and application of this approach in detail, both for mean global QOL and for change from baseline. We show that the proposed model generally performs well in comparing global patterns of treatment effect and provides more precise and reliable estimates than several common alternatives such as selecting from or averaging observed global item measures. A variety of computational methods could be used for estimation. We derived a closed-form expression for the marginal likelihood that can be used to obtain maximum likelihood parameter estimates when normality assumptions are reasonable. Our approach is useful for QOL evaluations aimed at pharmacoeconomic or individual clinical decision making and in obtaining summary QOL measures for use in quality-adjusted survival analyses.

摘要

生活质量(QOL)评估是许多临床研究的关键组成部分,通常需要使用单一的全球综合指标来捕捉从广泛的 QOL 问题评估中得出的整体结果平衡。我们提出并评估了一种不规则的多层潜在变量模型,该模型适合用作健康相关 QOL 评估的全球综合工具。所提出的模型是一种具有两层潜在变量结构的多指标和多原因模型。我们从一般的多层建模角度来处理建模问题,使用随机和非随机聚类类型的组合来适应健康相关 QOL 评估中常见的问题组合——对 QOL 和健康的总体看法,以及特定的心理、身体、社会和功能问题。使用临床试验数据,我们详细评估了这种方法的优点和应用,包括对全球 QOL 均值和从基线变化的评估。我们表明,该模型在比较治疗效果的全球模式方面表现良好,并提供比几种常见替代方法(例如从观察到的全球项目测量中选择或平均)更精确和可靠的估计。可以使用多种计算方法进行估计。我们推导出了一个可以用于获得合理正态性假设下最大似然参数估计的边缘似然的闭式表达式。我们的方法适用于旨在进行药物经济学或个体临床决策的 QOL 评估,以及用于获得用于调整后的生存分析的综合 QOL 测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验