Suppr超能文献

使用 1-(2'-脱氧-2'-18F-氟-β-D-阿拉伯呋喃核苷)胞嘧啶和 1-(2'-脱氧-2'-18F-氟-β-L-阿拉伯呋喃核苷)-5-甲基胞嘧啶 PET 进行核苷类似物化疗分层。

Stratification of nucleoside analog chemotherapy using 1-(2'-deoxy-2'-18F-fluoro-β-D-arabinofuranosyl)cytosine and 1-(2'-deoxy-2'-18F-fluoro-β-L-arabinofuranosyl)-5-methylcytosine PET.

机构信息

Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

出版信息

J Nucl Med. 2012 Feb;53(2):275-80. doi: 10.2967/jnumed.111.090407.

Abstract

UNLABELLED

The ability to measure tumor determinants of response to nucleoside analog (NA) chemotherapy agents such as gemcitabine and related compounds could significantly affect the management of several types of cancer. Previously we showed that the accumulation in tumors of the new PET tracer 1-(2'-deoxy-2'-(18)F-fluoro-β-d-arabinofuranosyl)cytosine ((18)F-FAC) is predictive of responses to gemcitabine. (18)F-FAC retention in cells requires deoxycytidine kinase (dCK), a rate-limiting enzyme in the deoxyribonucleoside salvage metabolism and in gemcitabine conversion from an inactive prodrug to a cytotoxic compound. The objectives of the current study were to determine whether (18)F-FAC tumor uptake is also influenced by cytidine deaminase (CDA), a determinant of resistance to gemcitabine; to develop a new PET assay using (18)F-FAC and the related probe 1-(2'-deoxy-2'-(18)F-fluoro-β-l-arabinofuranosyl)-5-methylcytosine (l-(18)F-FMAC) to profile tumor lesions for both dCK and CDA enzymatic activities; and to determine whether this PET assay can identify the most effective NA chemotherapy against tumors with differential expression of dCK and CDA.

METHODS

Isogenic murine leukemic cell lines with defined dCK and CDA activities were generated by retroviral transduction. A cell viability assay was used to determine the sensitivity of the isogenic cell lines to the dCK-dependent NA prodrugs gemcitabine and clofarabine. In vitro enzymatic and cell-based tracer uptake assays and in vivo PET with (18)F-FAC and l-(18)F-FMAC were used to predict tumor responses to gemcitabine and clofarabine.

RESULTS

dCK and CDA activities measured by kinase and tracer uptake assays correlated with the sensitivity of isogenic cell lines to gemcitabine and clofarabine. Coexpression of CDA decreased the sensitivity of dCK-positive cells to gemcitabine treatment in vitro by 15-fold but did not affect responses to clofarabine. Coexpression of CDA decreased (18)F-FAC but not l-(18)F-FMAC, phosphorylation, and uptake by dCK-positive cells. (18)F-FAC and l-(18)F-FMAC PET estimates of the enzymatic activities of dCK and CDA in tumor implants in mice were predictive of responses to gemcitabine and clofarabine treatment in vivo.

CONCLUSION

These findings support the utility of PET-based phenotyping of tumor nucleoside metabolism for guiding the selection of NA prodrugs.

摘要

目的

确定氟代胞嘧啶脱氨酶 (CDA) 是否也会影响氟代胞苷 ((18)F-FAC) 肿瘤摄取,CDA 是吉西他滨耐药的决定因素;开发一种使用 (18)F-FAC 和相关探针 1-(2'-脱氧-2'-(18)F-氟-β-L-阿拉伯呋喃基)-5-甲基胞嘧啶 (l-(18)F-FMAC) 的新 PET 测定法,以对肿瘤病变进行 dCK 和 CDA 酶活性分析;并确定该 PET 测定法是否可以识别针对具有不同 dCK 和 CDA 表达的肿瘤的最有效的 NA 化疗药物。

方法

通过逆转录病毒转导生成具有明确 dCK 和 CDA 活性的同基因鼠白血病细胞系。细胞活力测定法用于确定同基因细胞系对 dCK 依赖性 NA 前药吉西他滨和克拉屈滨的敏感性。体外酶和细胞内示踪剂摄取测定法以及体内 (18)F-FAC 和 l-(18)F-FMAC 的 PET 用于预测吉西他滨和克拉屈滨对肿瘤的反应。

结果

激酶和示踪剂摄取测定法测量的 dCK 和 CDA 活性与同基因细胞系对吉西他滨和克拉屈滨的敏感性相关。CDA 的共表达使 dCK 阳性细胞对吉西他滨处理的体外敏感性降低了 15 倍,但不影响对克拉屈滨的反应。CDA 的共表达降低了 dCK 阳性细胞的 (18)F-FAC 但不降低 l-(18)F-FMAC、磷酸化和摄取。在小鼠肿瘤植入物中,(18)F-FAC 和 l-(18)F-FMAC PET 对 dCK 和 CDA 酶活性的估计可预测体内吉西他滨和克拉屈滨治疗的反应。

结论

这些发现支持基于 PET 的肿瘤核苷代谢表型分析用于指导 NA 前药选择的实用性。

相似文献

2
Novel PET probes specific for deoxycytidine kinase.
J Nucl Med. 2010 Jul;51(7):1092-8. doi: 10.2967/jnumed.109.073361. Epub 2010 Jun 16.
3
[18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4027-32. doi: 10.1073/pnas.1524212113. Epub 2016 Mar 28.
4
Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway.
Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):711-21. doi: 10.1007/s00259-010-1666-z. Epub 2010 Dec 3.
5
Noninvasive prediction of tumor responses to gemcitabine using positron emission tomography.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2847-52. doi: 10.1073/pnas.0812890106. Epub 2009 Feb 5.
6
Human Biodistribution and Radiation Dosimetry of F-Clofarabine, a PET Probe Targeting the Deoxyribonucleoside Salvage Pathway.
J Nucl Med. 2017 Mar;58(3):374-378. doi: 10.2967/jnumed.116.182394. Epub 2016 Nov 3.
7
Metabolomics strategy reveals subpopulation of liposarcomas sensitive to gemcitabine treatment.
Cancer Discov. 2012 Dec;2(12):1109-17. doi: 10.1158/2159-8290.CD-12-0197.

引用本文的文献

2
In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET.
ACS Cent Sci. 2021 Oct 27;7(10):1638-1649. doi: 10.1021/acscentsci.1c00529. Epub 2021 Sep 2.
4
Metabolic Phenotypes, Dependencies, and Adaptation in Lung Cancer.
Cold Spring Harb Perspect Med. 2021 Nov 1;11(11):a037838. doi: 10.1101/cshperspect.a037838.
5
4-N-Alkanoyl and 4-N-alkyl gemcitabine analogues with NOTA chelators for 68-gallium labelling.
Bioorg Med Chem. 2018 Nov 15;26(21):5624-5630. doi: 10.1016/j.bmc.2018.10.007. Epub 2018 Oct 12.
6
The 4-N-acyl and 4-N-alkyl gemcitabine analogues with silicon-fluoride-acceptor: Application to F-Radiolabeling.
Eur J Med Chem. 2018 Mar 25;148:314-324. doi: 10.1016/j.ejmech.2018.02.017. Epub 2018 Feb 12.
7
Imaging Cancer Metabolism.
Biomol Ther (Seoul). 2018 Jan 1;26(1):81-92. doi: 10.4062/biomolther.2017.220.
9
Advances in PET Detection of the Antitumor T Cell Response.
Adv Immunol. 2016;131:187-231. doi: 10.1016/bs.ai.2016.02.004. Epub 2016 Apr 5.
10
[18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4027-32. doi: 10.1073/pnas.1524212113. Epub 2016 Mar 28.

本文引用的文献

1
Regulation of cancer cell metabolism.
Nat Rev Cancer. 2011 Feb;11(2):85-95. doi: 10.1038/nrc2981.
2
Novel PET probes specific for deoxycytidine kinase.
J Nucl Med. 2010 Jul;51(7):1092-8. doi: 10.2967/jnumed.109.073361. Epub 2010 Jun 16.
3
Genetic factors influencing cytarabine therapy.
Pharmacogenomics. 2009 Oct;10(10):1657-74. doi: 10.2217/pgs.09.118.
4
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer.
Science. 2009 Jun 12;324(5933):1457-61. doi: 10.1126/science.1171362. Epub 2009 May 21.
5
Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.
Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.
6
Noninvasive prediction of tumor responses to gemcitabine using positron emission tomography.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2847-52. doi: 10.1073/pnas.0812890106. Epub 2009 Feb 5.
7
Clinical applications of metabolomics in oncology: a review.
Clin Cancer Res. 2009 Jan 15;15(2):431-40. doi: 10.1158/1078-0432.CCR-08-1059.
9
Review of recent studies on resistance to cytotoxic deoxynucleoside analogues.
Biochim Biophys Acta. 2007 Dec;1776(2):138-59. doi: 10.1016/j.bbcan.2007.07.004. Epub 2007 Aug 14.
10
Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy?
Br J Cancer. 2007 Jul 16;97(2):145-51. doi: 10.1038/sj.bjc.6603860. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验