Capron Arnaud, Chatfield Steven, Provart Nicholas, Berleth Thomas
Dept. of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, M5S 3G5 Canada.
Arabidopsis Book. 2009;7:e0126. doi: 10.1199/tab.0126. Epub 2009 Nov 12.
During embryogenesis a single cell gives rise to a functional multicellular organism. In higher plants, as in many other multicellular systems, essential architectural features, such as body axes and major tissue layers are established early in embryogenesis and serve as a positional framework for subsequent pattern elaboration. In Arabidopsis, the apicalbasal axis and the radial pattern of tissues wrapped around it are already recognizable in young embryos of only about a hundred cells in size. This early axial pattern seems to provide a coordinate system for the embryonic initiation of shoot and root. Findings from genetic studies in Arabidopsis are revealing molecular mechanisms underlying the initial establishment of the axial core pattern and its subsequent elaboration into functional shoots and roots. The genetic programs operating in the early embryo organize functional cell patterns rapidly and reproducibly from minimal cell numbers. Understanding their molecular details could therefore greatly expand our ability to generate plant body patterns de novo, with important implications for plant breeding and biotechnology.
在胚胎发育过程中,一个单细胞会发育成一个功能完备的多细胞生物体。在高等植物中,如同许多其他多细胞系统一样,诸如体轴和主要组织层等基本结构特征在胚胎发育早期就已确立,并作为后续模式细化的位置框架。在拟南芥中,顶 - 基轴以及围绕它的组织的径向模式在仅约一百个细胞大小的幼胚中就已经可以识别。这种早期的轴向模式似乎为茎和根的胚胎起始提供了一个坐标系。拟南芥的遗传学研究结果揭示了轴向核心模式最初建立及其随后细化为功能茎和根的分子机制。早期胚胎中运行的遗传程序能从极少的细胞数量快速且可重复地组织功能细胞模式。因此,了解它们的分子细节可以极大地扩展我们从头生成植物体模式的能力,这对植物育种和生物技术具有重要意义。