Costard Anne D, Elsen Jean-Michel
Station d'Amélioration Génétique Animale, Institut National de la Recherche Agronomique Castanet-Tolosan, France.
Front Genet. 2011 Jul 21;2:40. doi: 10.3389/fgene.2011.00040. eCollection 2011.
Many of the models used to optimize selection processes in livestock make the assumption that the population is of infinite size and are built on deterministic equations. The finite size case should however be considered explicitly when selection involves one identified gene. Indeed, drift can cause the loss of a favorable allele if its initial frequency is low. In this paper, a stochastic approach was developed to simultaneously optimize selection on two traits in a limited size population: a quantitative trait with underlying polygenic variation and a monogenic trait. We outline the interests of considering the limited size of the population in stochastic modeling with a simple example. Such stochastic models raise some technical problems (uncertain convergence to the maximum, computational burden) which could obliterate their usefulness as compared to simpler but approximate deterministic models which can be used when the population size is large. By way of this simple example, we show the feasibility of the optimization of this type of model using a genetic algorithm and demonstrate its interest compared with the corresponding deterministic model which assumes that the population is of infinite size.
许多用于优化家畜选择过程的模型都假定群体规模是无限的,并且是基于确定性方程构建的。然而,当选择涉及一个已识别的基因时,应明确考虑有限规模的情况。实际上,如果有利等位基因的初始频率较低,遗传漂变可能导致其丢失。在本文中,我们开发了一种随机方法,用于在有限规模群体中同时优化对两个性状的选择:一个具有潜在多基因变异的数量性状和一个单基因性状。我们用一个简单的例子概述了在随机建模中考虑群体有限规模的益处。这种随机模型引发了一些技术问题(不确定是否收敛到最大值、计算负担),与在群体规模较大时可使用的更简单但近似的确定性模型相比,这些问题可能会削弱其有用性。通过这个简单的例子,我们展示了使用遗传算法优化这类模型的可行性,并证明了与假设群体规模无限的相应确定性模型相比,它的优势。