Suppr超能文献

非平衡增长网络的熵率

Entropy rate of nonequilibrium growing networks.

作者信息

Zhao Kun, Halu Arda, Severini Simone, Bianconi Ginestra

机构信息

Department of Physics, Northeastern University, Boston, 02115 Massachusetts, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066113. doi: 10.1103/PhysRevE.84.066113. Epub 2011 Dec 16.

Abstract

New entropy measures have been recently introduced for the quantification of the complexity of networks. Most of these entropy measures apply to static networks or to dynamical processes defined on static complex networks. In this paper we define the entropy rate of growing network models. This entropy rate quantifies how many labeled networks are typically generated by the growing network models. We analytically evaluate the difference between the entropy rate of growing tree network models and the entropy of tree networks that have the same asymptotic degree distribution. We find that the growing networks with linear preferential attachment generated by dynamical models are exponentially less than the static networks with the same degree distribution for a large variety of relevant growing network models. We study the entropy rate for growing network models showing structural phase transitions including models with nonlinear preferential attachment. Finally, we bring numerical evidence that the entropy rate above and below the structural phase transitions follows a different scaling with the network size.

摘要

最近引入了新的熵度量来量化网络的复杂性。这些熵度量大多适用于静态网络或定义在静态复杂网络上的动态过程。在本文中,我们定义了增长网络模型的熵率。这个熵率量化了增长网络模型通常生成多少个带标签的网络。我们通过分析评估了增长树网络模型的熵率与具有相同渐近度分布的树网络的熵之间的差异。我们发现,对于各种相关的增长网络模型,由动态模型生成的具有线性偏好依附的增长网络比具有相同度分布的静态网络指数级地少。我们研究了显示结构相变的增长网络模型的熵率,包括具有非线性偏好依附的模型。最后,我们给出数值证据表明,结构相变之上和之下的熵率与网络大小遵循不同的标度关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验