Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.B. 49, Hungary.
Phys Rev Lett. 2012 Jan 6;108(1):017205. doi: 10.1103/PhysRevLett.108.017205. Epub 2012 Jan 4.
We consider a spin-1/2 tube (a three-leg ladder with periodic boundary conditions) with a Hamiltonian given by two projection operators-one on the triangles and the other on the square plaquettes on the side of the tube-that can be written in terms of Heisenberg and four-spin ring exchange interactions. We identify 3 phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact ground state with a gapped spectrum can be given as an alternation of spin and chirality singlet bonds between nearest triangles; (ii) for ferromagnetic exchange on the triangles, we recover the phase of the spin-3/2 Heisenberg chain; (iii) between these two phases, a gapless incommensurate phase exists. We construct an exact ground state with two deconfined domain walls and a gapless excitation spectrum at the quantum phase transition point between the incommensurate and dimerized phases.
我们考虑一个自旋-1/2 管(一个带有周期性边界条件的三脚梯),其哈密顿量由两个投影算符给出——一个在三角形上,另一个在管侧面的正方形 plaquettes 上——可以用海森堡和四自旋环交换相互作用来表示。我们确定了 3 个相:(i)对于三角形上的强反铁磁交换,具有带隙谱的精确基态可以表示为最近三角形之间的自旋和手性单键的交替;(ii)对于三角形上的铁磁交换,我们恢复了自旋-3/2 海森堡链的相;(iii)在这两个相之间,存在一个无带隙的非整数量子相。我们在非整数量子相和二聚化相之间的量子相变点构造了一个具有两个离域畴壁的精确基态和无带隙激发谱。