Segl Karl, Richter Rudolf, Küster Theres, Kaufmann Hermann
Section 1.4 Remote Sensing, Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany. karl.segl@gfz‐potsdam.de
Appl Opt. 2012 Feb 1;51(4):439-49. doi: 10.1364/AO.51.000439.
An end-to-end sensor simulation is a proper tool for the prediction of the sensor's performance over a range of conditions that cannot be easily measured. In this study, such a tool has been developed that enables the assessment of the optimum spectral resolution configuration of a sensor based on key applications. It employs the spectral molecular absorption and scattering properties of materials that are used for the identification and determination of the abundances of surface and atmospheric constituents and their interdependence on spatial resolution and signal-to-noise ratio as a basis for the detailed design and consolidation of spectral bands for the future Sentinel-2 sensor. The developed tools allow the computation of synthetic Sentinel-2 spectra that form the frame for the subsequent twofold analysis of bands in the atmospheric absorption and window regions. One part of the study comprises the assessment of optimal spatial and spectral resolution configurations for those bands used for atmospheric correction, optimized with regard to the retrieval of aerosols, water vapor, and the detection of cirrus clouds. The second part of the study presents the optimization of thematic bands, mainly driven by the spectral characteristics of vegetation constituents and minerals. The investigation is performed for different wavelength ranges because most remote sensing applications require the use of specific band combinations rather than single bands. The results from the important "red-edge" and the "short-wave infrared" domains are presented. The recommended optimum spectral design predominantly confirms the sensor parameters given by the European Space Agency. The system is capable of retrieving atmospheric and geobiophysical parameters with enhanced quality compared to existing multispectral sensors. Minor spectral changes of single bands are discussed in the context of typical remote sensing applications, supplemented by the recommendation of a few new bands for the next generation of optical Sentinel sensors.
端到端传感器模拟是一种合适的工具,可用于预测传感器在一系列难以轻松测量的条件下的性能。在本研究中,开发了这样一种工具,它能够根据关键应用评估传感器的最佳光谱分辨率配置。该工具利用材料的光谱分子吸收和散射特性,这些特性用于识别和确定地表和大气成分的丰度,以及它们对空间分辨率和信噪比的相互依赖性,以此作为未来哨兵 -2 传感器光谱波段详细设计和整合的基础。所开发的工具允许计算合成的哨兵 -2 光谱,这些光谱构成了随后对大气吸收和窗口区域波段进行双重分析的框架。研究的一部分包括评估用于大气校正的波段的最佳空间和光谱分辨率配置,这些配置在气溶胶、水汽反演以及卷云检测方面进行了优化。研究的第二部分介绍了专题波段的优化,主要由植被成分和矿物质的光谱特征驱动进行。针对不同波长范围进行了研究,因为大多数遥感应用需要使用特定的波段组合而非单个波段。给出了重要的“红边”和“短波红外”区域的结果。推荐的最佳光谱设计主要证实了欧洲航天局给出的传感器参数。与现有的多光谱传感器相比,该系统能够以更高的质量反演大气和地球生物物理参数。在典型遥感应用的背景下讨论了单个波段的微小光谱变化,并为下一代光学哨兵传感器推荐了一些新波段。