Suppr超能文献

鉴定线粒体乙酰转移酶程序的分子成分:GCN5L1 的新作用。

Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1.

机构信息

Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1454, USA.

出版信息

Biochem J. 2012 May 1;443(3):655-61. doi: 10.1042/BJ20120118.

Abstract

SIRT3 (sirtuin 3) modulates respiration via the deacetylation of lysine residues in electron transport chain proteins. Whether mitochondrial protein acetylation is controlled by a counter-regulatory program has remained elusive. In the present study we identify an essential component of this previously undefined mitochondrial acetyltransferase system. We show that GCN5L1 [GCN5 (general control of amino acid synthesis 5)-like 1; also known as Bloc1s1] counters the acetylation and respiratory effects of SIRT3. GCN5L1 is mitochondrial-enriched and displays significant homology with a prokaryotic acetyltransferase. Genetic knockdown of GCN5L1 blunts mitochondrial protein acetylation, and its reconstitution in intact mitochondria restores protein acetylation. GCN5L1 interacts with and promotes acetylation of SIRT3 respiratory chain targets and reverses global SIRT3 effects on mitochondrial protein acetylation, respiration and bioenergetics. The results of the present study identify GCN5L1 as a critical prokaryote-derived component of the mitochondrial acetyltransferase programme.

摘要

SIRT3(沉默信息调节因子 3)通过去乙酰化电子传递链蛋白中的赖氨酸残基来调节呼吸作用。线粒体蛋白乙酰化是否受反向调节程序控制一直难以捉摸。在本研究中,我们确定了这个以前未定义的线粒体乙酰转移酶系统的一个必需组成部分。我们表明,GCN5L1[GCN5(一般氨基酸合成的通用控制 5)样 1;也称为 Bloc1s1]可拮抗 SIRT3 的乙酰化和呼吸作用。GCN5L1 富含线粒体,并与原核乙酰转移酶具有显著同源性。GCN5L1 的基因敲低会削弱线粒体蛋白的乙酰化,而其在完整线粒体中的重新构建可恢复蛋白的乙酰化。GCN5L1 与 SIRT3 呼吸链靶标相互作用并促进其乙酰化,并逆转 SIRT3 对线粒体蛋白乙酰化、呼吸作用和生物能量学的全局影响。本研究的结果确定 GCN5L1 为线粒体乙酰转移酶系统中关键的原核衍生组成部分。

相似文献

2
Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension.
Circ Res. 2024 May 24;134(11):1451-1464. doi: 10.1161/CIRCRESAHA.123.323596. Epub 2024 Apr 19.
3
The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA.
J Biol Chem. 2018 Nov 16;293(46):17676-17684. doi: 10.1074/jbc.AC118.005462. Epub 2018 Oct 15.
4
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H265-H274. doi: 10.1152/ajpheart.00752.2016. Epub 2017 May 19.
5
Restricted mitochondrial protein acetylation initiates mitochondrial autophagy.
J Cell Sci. 2013 Nov 1;126(Pt 21):4843-9. doi: 10.1242/jcs.131300. Epub 2013 Sep 4.
7
GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism.
Trends Cell Biol. 2018 May;28(5):346-355. doi: 10.1016/j.tcb.2018.01.007. Epub 2018 Feb 21.
10
The emerging roles of GCN5L1 in mitochondrial and vacuolar organelle biology.
Biochim Biophys Acta Gene Regul Mech. 2021 Feb;1864(2):194598. doi: 10.1016/j.bbagrm.2020.194598. Epub 2020 Jun 26.

引用本文的文献

1
Mitochondrial hyper-acetylation induced by an engineered acetyltransferase promotes cellular senescence.
iScience. 2025 Jul 29;28(9):113233. doi: 10.1016/j.isci.2025.113233. eCollection 2025 Sep 19.
2
Harnessing mitochondrial biogenesis to combat acute kidney injury: Current insights and futuredirections.
Genes Dis. 2025 Apr 15;12(6):101645. doi: 10.1016/j.gendis.2025.101645. eCollection 2025 Nov.
5
The role of acetylation in obesity-induced cardiac metabolic alterations.
J Pharm Pharm Sci. 2024 Jul 23;27:13080. doi: 10.3389/jpps.2024.13080. eCollection 2024.
6
Deacetylation mimetic mutation of mitochondrial SOD2 attenuates ANG II-induced hypertension by protecting against oxidative stress and inflammation.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H433-H443. doi: 10.1152/ajpheart.00162.2024. Epub 2024 Jun 21.
7
Validation of GCN5L1/BLOC1S1/BLOS1 antibodies using knockout cells and tissue.
Biochem J. 2024 May 22;481(10):643-651. doi: 10.1042/BCJ20230302.
8
Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension.
Circ Res. 2024 May 24;134(11):1451-1464. doi: 10.1161/CIRCRESAHA.123.323596. Epub 2024 Apr 19.
9
COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function.
Nat Metab. 2023 Nov;5(11):1931-1952. doi: 10.1038/s42255-023-00904-w. Epub 2023 Oct 9.
10
Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling.
Cell Biosci. 2023 Aug 15;13(1):151. doi: 10.1186/s13578-023-01098-0.

本文引用的文献

1
The role of sirtuins in modulating redox stressors.
Free Radic Biol Med. 2012 Jan 15;52(2):281-90. doi: 10.1016/j.freeradbiomed.2011.10.484. Epub 2011 Oct 31.
2
SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity.
EMBO Rep. 2011 Jul 1;12(8):840-6. doi: 10.1038/embor.2011.121.
3
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.
Mol Cell. 2011 Jan 21;41(2):139-49. doi: 10.1016/j.molcel.2011.01.002.
6
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity.
Free Radic Biol Med. 2010 Oct 15;49(7):1230-7. doi: 10.1016/j.freeradbiomed.2010.07.009. Epub 2010 Jul 18.
8
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
Nature. 2010 Mar 4;464(7285):121-5. doi: 10.1038/nature08778.
9
Mitochondrial sirtuins.
Biochim Biophys Acta. 2010 Aug;1804(8):1645-51. doi: 10.1016/j.bbapap.2009.12.021. Epub 2010 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验