Suppr超能文献

赖氨酸残基去乙酰化对线粒体功能和心血管生物学调节作用的新表征。

The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology.

作者信息

Lu Zhongping, Scott Iain, Webster Bradley R, Sack Michael N

机构信息

Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.

出版信息

Circ Res. 2009 Oct 23;105(9):830-41. doi: 10.1161/CIRCRESAHA.109.204974.

Abstract

There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via nonhistone protein lysine residue acetyl posttranslation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by NAD(+)-dependent activation of the sirtuin family of proteins, whereas acetyltransferase modifications are controlled by less clearly delineated acetyltransferases. Subcellular localization specific protein targets of lysine-acetyl modification have been identified in the nucleus, cytoplasm, and mitochondria. Despite distinct subcellular localizations, these modifications appear, in large part, to modify mitochondrial properties including respiration, energy production, apoptosis, and antioxidant defenses. These mitochondrial regulatory programs are important in cardiovascular biology, although how protein acetyl modifications effects cardiovascular pathophysiology has not been extensively explored. This review will introduce the role of nonhistone protein lysine residue acetyl modifications, discuss their regulation and biochemistry and present the direct and indirect data implicating their involvement in the heart and vasculature.

摘要

一种新型的燃料和氧化还原感应调节程序正在逐渐被认识,该程序通过非组蛋白赖氨酸残基的翻译后乙酰化修饰来控制细胞适应性。该程序在能量需求高和氧化能力强的组织中发挥作用,在心脏中高度富集。去乙酰化由烟酰胺腺嘌呤二核苷酸(NAD⁺)依赖的沉默调节蛋白家族蛋白激活来调控,而乙酰转移酶修饰则由不太明确的乙酰转移酶控制。赖氨酸乙酰化修饰的亚细胞定位特异性蛋白靶点已在细胞核、细胞质和线粒体中被鉴定出来。尽管亚细胞定位不同,但这些修饰在很大程度上似乎会改变线粒体的特性,包括呼吸作用、能量产生、细胞凋亡和抗氧化防御。这些线粒体调节程序在心血管生物学中很重要,尽管蛋白质乙酰化修饰如何影响心血管病理生理学尚未得到广泛研究。本综述将介绍非组蛋白赖氨酸残基乙酰化修饰的作用,讨论其调控和生物化学,并展示表明它们参与心脏和血管系统的直接和间接数据。

相似文献

2
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H265-H274. doi: 10.1152/ajpheart.00752.2016. Epub 2017 May 19.
3
Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors.
Cell Mol Life Sci. 2010 Sep;67(18):3073-87. doi: 10.1007/s00018-010-0402-y. Epub 2010 Aug 3.
4
NAD and ADP-ribose metabolism in mitochondria.
FEBS J. 2013 Aug;280(15):3530-41. doi: 10.1111/febs.12304. Epub 2013 Jun 3.
6
Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure.
Circ Res. 2020 Sep 25;127(8):1094-1108. doi: 10.1161/CIRCRESAHA.120.317293. Epub 2020 Jul 14.
7
Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation.
Handb Exp Pharmacol. 2011;206:163-88. doi: 10.1007/978-3-642-21631-2_8.
8
Regulation and protection of mitochondrial physiology by sirtuins.
Mitochondrion. 2012 Jan;12(1):66-76. doi: 10.1016/j.mito.2011.07.003. Epub 2011 Jul 20.
9
Post-translational modifications in mitochondria: protein signaling in the powerhouse.
Cell Mol Life Sci. 2016 Nov;73(21):4063-73. doi: 10.1007/s00018-016-2280-4. Epub 2016 May 27.
10
Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria?
J Mol Biol. 2020 Mar 6;432(5):1446-1460. doi: 10.1016/j.jmb.2019.09.011. Epub 2019 Oct 16.

引用本文的文献

2
Advances in Factors Affecting ALDH2 Activity and its Mechanisms.
Cardiovasc Toxicol. 2024 Dec;24(12):1428-1438. doi: 10.1007/s12012-024-09923-9. Epub 2024 Oct 4.
4
Reduced acetylation of TFAM promotes bioenergetic dysfunction in the failing heart.
iScience. 2023 May 23;26(6):106942. doi: 10.1016/j.isci.2023.106942. eCollection 2023 Jun 16.
7
Genetically encoded biosensors for evaluating NAD/NADH ratio in cytosolic and mitochondrial compartments.
Cell Rep Methods. 2021 Nov 22;1(7). doi: 10.1016/j.crmeth.2021.100116. Epub 2021 Nov 15.
8
A global map of associations between types of protein posttranslational modifications and human genetic diseases.
iScience. 2021 Jul 30;24(8):102917. doi: 10.1016/j.isci.2021.102917. eCollection 2021 Aug 20.
9
Post-translational Acetylation Control of Cardiac Energy Metabolism.
Front Cardiovasc Med. 2021 Aug 2;8:723996. doi: 10.3389/fcvm.2021.723996. eCollection 2021.
10
Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure.
Circ Res. 2020 Sep 25;127(8):1109-1111. doi: 10.1161/CIRCRESAHA.120.317910. Epub 2020 Sep 24.

本文引用的文献

1
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice.
J Clin Invest. 2009 Sep;119(9):2758-71. doi: 10.1172/JCI39162. Epub 2009 Aug 3.
3
Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity.
Biochem Biophys Res Commun. 2009 Sep 4;386(4):729-33. doi: 10.1016/j.bbrc.2009.06.113. Epub 2009 Jun 25.
4
5
GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation.
J Biol Chem. 2009 Jul 24;284(30):19945-52. doi: 10.1074/jbc.M109.015164. Epub 2009 Jun 2.
6
ATP-citrate lyase links cellular metabolism to histone acetylation.
Science. 2009 May 22;324(5930):1076-80. doi: 10.1126/science.1164097.
7
Biochemistry. A glucose-to-gene link.
Science. 2009 May 22;324(5930):1021-2. doi: 10.1126/science.1174665.
8
Post-translational modifications of mitochondrial outer membrane proteins.
Methods Enzymol. 2009;457:97-115. doi: 10.1016/S0076-6879(09)05006-X.
9
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.
Cell. 2009 May 1;137(3):560-70. doi: 10.1016/j.cell.2009.02.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验