Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
Phys Chem Chem Phys. 2012 May 14;14(18):6409-32. doi: 10.1039/c2cp22974a. Epub 2012 Feb 8.
Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i<n|∇n>, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge group applicable in the immediate vicinity of a two-state intersection is U(2), which factors to U(1) × SU(2). Gauging SU(2) yields three fields, whereas U(1) is not gauged, as the result cannot be brought into registry with electronic structure theory, and there are other problems as well. A parallel with spontaneous symmetry breaking in electroweak theory is noted. Loss of SU(2) symmetry as the energy gap between adiabats increases yields the inter-related U(1) symmetries of the upper and lower adiabats, with spinor character imprinted in the vicinity of the degeneracy.
几何相位是一个有趣的话题,与众多不同的研究领域有关:分子、光学、量子计算、量子霍尔效应、石墨烯等。只有当感兴趣的系统与它认为是外部的东西相互作用时,才会存在几何相位。孤立系统不能显示几何相位。本文从规范场论的角度研究多原子分子中的几何相位。规范场论是由福克在电动力学中引入的,并由魏尔(Weyl)进行了深入研究。它产生规范场 A(μ)、粒子场耦合和阿哈罗诺夫-玻姆相位,而杨-米尔斯理论是物理标准模型的基石,是规范对称性的非阿贝尔模板。电子结构理论,包括非绝热性,是一个具有矩阵协变导数的非阿贝尔规范场论。由于孤立分子的波函数必须是单值的,所以它的整体 U(1)对称性不能被规范化,即核和电子函数的乘积,如 χ(n)ψ(n),不能在 R 上经历局部相位变换,其中 R 表示核自由度。另一方面,同步变换(最早由米德和特鲁哈尔指出): ψ(n)→ψ(n)e(iζ) ,同时 χ(n)→χ(n)e(-iζ),保持单值性,并使每个子空间中的波函数在 R 上经历相位变换。因此,每个子空间都与一个 U(1)规范场论相容。中心数学对象是贝里的绝热连接 i<n|∇n>,它是两个子系统之间的通信链接。结果表明,根据规范原理添加到连接中的项实际上是 ψ(n)和 χ(n)相位变换的同步(e(iζ)/e(-iζ))性质的表现。回顾了两个重要的 U(1)连接:电磁学中的 qA(μ)和贝里的连接。回顾了 SU(2)和 SU(3)的规范化,并将其应用于分子。在两个态交叉点的附近,应用的最大规范群是 U(2),它可以分解为 U(1)×SU(2)。规范 SU(2)产生三个场,而 U(1)没有被规范化,因为结果不能与电子结构理论相匹配,并且还有其他问题。注意到电弱理论中自发对称破缺的平行性。随着绝热之间的能隙增大,SU(2)对称性的丧失导致了上绝热和下绝热的相互关联的 U(1)对称性,在简并附近刻印有旋量特征。