Donghi Daniela, Sigel Roland K O
Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland.
Methods Mol Biol. 2012;848:253-73. doi: 10.1007/978-1-61779-545-9_16.
Metal ions are indispensable for ribonucleic acids (RNAs) folding and activity. First they act as charge neutralization agents, allowing the RNA molecule to attain the complex active three dimensional structure. Second, metal ions are eventually directly involved in function. Nuclear magnetic resonance (NMR) spectroscopy offers several ways to study the RNA-metal ion interactions at an atomic level. Here, we first focus on special requirements for NMR sample preparation for this kind of experiments: the practical aspects of in vitro transcription and purification of small (<50 nt) RNA fragments are described, as well as the precautions that must be taken into account when a sample for metal ion titration experiments is prepared. Subsequently, we discuss the NMR techniques to accurately locate and characterize metal ion binding sites in a large RNA. For example, (2) J-[(1)H,(15)N]-HSQC (heteronuclear single quantum coherence) experiments are described to qualitatively distinguish between different modes of interaction. Finally, part of the last section is devoted to data analysis; this is how to calculate intrinsic affinity constants.
金属离子对于核糖核酸(RNA)的折叠和活性不可或缺。首先,它们充当电荷中和剂,使RNA分子能够获得复杂的活性三维结构。其次,金属离子最终直接参与功能。核磁共振(NMR)光谱提供了几种在原子水平上研究RNA-金属离子相互作用的方法。在此,我们首先关注此类实验中NMR样品制备的特殊要求:描述了体外转录和纯化小(<50 nt)RNA片段的实际操作,以及制备用于金属离子滴定实验的样品时必须考虑的注意事项。随后,我们讨论用于在大型RNA中准确定位和表征金属离子结合位点的NMR技术。例如,描述了(2)J-[(1)H,(15)N]-HSQC(异核单量子相干)实验,以定性区分不同的相互作用模式。最后,最后一部分的一部分专门用于数据分析;即如何计算内在亲和常数。