Qin Peter Z, Dieckmann Thorsten
Department of Chemistry, University of Southern California, LJS-251, 840 Downey Way, Los Angeles, California 90089-0744, USA.
Curr Opin Struct Biol. 2004 Jun;14(3):350-9. doi: 10.1016/j.sbi.2004.04.002.
The application of techniques based on magnetic resonance, specifically electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR), has provided a wealth of new information on RNA structures, as well as insights into the dynamics and function of these important biomolecules. NMR spectroscopy is very successful for determining the solution structures of small RNA domains, aptamers and ribozymes, and exploring their intramolecular dynamics and interactions with ligands. EPR-based methods have been used to map local dynamic and structural features of RNA, to explore different modes of RNA-ligand interaction, to obtain long-range structural restraints and to probe metal-ion-binding sites.
基于磁共振的技术应用,特别是电子顺磁共振(EPR)和核磁共振(NMR),已经提供了大量关于RNA结构的新信息,以及对这些重要生物分子的动力学和功能的深入了解。核磁共振光谱在确定小RNA结构域、适体和核酶的溶液结构,以及探索它们的分子内动力学和与配体的相互作用方面非常成功。基于电子顺磁共振的方法已被用于绘制RNA的局部动力学和结构特征,探索RNA-配体相互作用的不同模式,获得长程结构限制并探测金属离子结合位点。