Electronics Department, University of Alcalá, Polytechnic School, University Campus, Alcalá de Henares, Madrid 28871, Spain.
Sensors (Basel). 2010;10(4):3741-58. doi: 10.3390/s100403741. Epub 2010 Apr 13.
This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.
本文对基于立体视觉的行人检测传感器在汽车应用中的深度估计误差进行了分析研究,例如行人避撞和/或缓解。该传感器由两个同步和校准的低成本摄像机组成。行人检测是通过将 3D 聚类方法与基于支持向量机(SVM)的分类相结合来实现的。详细分析了传感器参数对立体量化误差的影响,为根据应用要求选择传感器设置提供了参考。然后在实际实验中验证了传感器。通过转向进行避撞操作是由手动驾驶完成的。实时动态差分全球定位系统(RTK-DGPS)用于提供与行人位置和主机车辆位置相对应的地面真实数据。进行的现场测试提供了令人鼓舞的结果,并证明了所提出的传感器在汽车领域中的有效性,可用于自主行人避撞等应用。