Suppr超能文献

车载行人意图检测。

On-Board Detection of Pedestrian Intentions.

机构信息

Computer Science Department, Universitat Autònoma Barcelona (UAB), 08193 Barcelona, Spain.

Computer Vision Center (CVC), Universitat Autònoma Barcelona (UAB), 08193 Barcelona, Spain.

出版信息

Sensors (Basel). 2017 Sep 23;17(10):2193. doi: 10.3390/s17102193.

Abstract

Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role. During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors. However, detection is just the first step towards answering the core question, namely Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information.

摘要

避免车辆与行人碰撞是当今先进驾驶辅助系统 (ADAS) 和未来自动驾驶车辆的关键要求。因此,从原始传感器数据中检测行人已有超过 15 年的研究历史,其中视觉起着核心作用。近年来,深度学习极大地提高了基于图像的行人检测器的准确性。然而,检测只是回答核心问题的第一步,即行人是否有过马路的意图。因此,尽快了解检测到的行人是否有意在车辆前方过马路,对于执行安全舒适的避让动作以防止碰撞至关重要。然而,与行人检测相比,关于检测行人意图的文献相对较少。本文旨在通过提出一种新的基于视觉的方法来解决这个问题,该方法分析行人在几帧中的姿势,以确定他或她是否要进入道路。我们展示了实验结果,表明对于正在过马路的行人,可以提前 750 毫秒进行预判,在典型的城市驾驶速度为 50 公里/小时的情况下,可以为车辆自动反应或警告驾驶员提供 15 米的额外距离(与纯行人检测器相比)。此外,与最先进的方法相比,我们的方法是单目,既不需要立体视觉也不需要光流信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73b2/5676781/c428b75b7e6a/sensors-17-02193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验