Fidelity Systems, Inc., Gaithersburg, Maryland 20879, United States.
Biochemistry. 2012 Mar 13;51(10):2032-43. doi: 10.1021/bi2014807. Epub 2012 Mar 1.
We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.
我们之前介绍了一种通用的动力学方法,用于比较研究 DNA 聚合酶的连续性、热稳定性和对抑制剂的抗性[Pavlov,A.R.等人。(2002)Proc。Natl。Acad。Sci。U.S.A.99,13510-13515]。所提出的方法成功地应用于表征通过融合催化 DNA 聚合酶结构域与各种序列非特异性 DNA 结合结构域而创建的杂交 DNA 聚合酶。在这里,我们使用开发的动力学分析来评估 DNA 聚合酶的 DNA 延伸的基本参数,并进一步研究在以前构建的和新的嵌合 DNA 聚合酶中的域间相互作用。我们表明,将螺旋-发夹-螺旋(HhH)结构域连接到催化聚合酶结构域可以提高热稳定性,不仅可以提高来自极端嗜热物种的 DNA 聚合酶的热稳定性,还可以提高来自兼性嗜热细菌 Bacillus stearothermophilus 的酶的热稳定性。我们还表明,通过添加 Topo V HhH 结构域,嵌合聚合酶可以将有效的 DNA 合成延长至 105°C,从而在高温下保持 DNA 合成的连续性。我们发现,DNA 聚合酶的可逆高温结构转变会降低这些酶与模板结合的速率。此外,Arrhenius 方程的激活能和指数前因子表明,静电增强扩散控制缔合的机制在模板与 DNA 聚合酶的结合中作用较小。