Suppr超能文献

预测 209 种多氯代反式偶氮苯(PCt-ABs)土壤吸附系数(log KOC)值的 QSPR 模型。

QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).

机构信息

Research Group of Environmental Chemistry, Ecotoxicology & Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdańsk, Gdańsk, Poland.

出版信息

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(3):441-9. doi: 10.1080/10934529.2012.646138.

Abstract

The values of the soil sorption coefficient (K(OC)) have been computed for 209 environmentally relevant trans polychlorinated azobenzenes (PCABs) lacking experimental partitioning data. The quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability used in models based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G** basis set and of the semi-empirical quantum chemistry method for property parameterization (PM6) of the molecular orbital package (MOPAC). An experimentally available data on physical and chemical properties of PCDD/Fs and PCBs were used as reference data for the QSPR models and ANNs predictions in this study. Both calculation methods gave similar results in term of absolute log K(OC) values, while the PM6 model generated in the MOPAC was a much more efficient compared to the DFT model in GAUSSIAN. The estimated values of log K(OC) varied between 4.93 and 5.62 for mono-, 5.27 and 7.46 for di-, 6.46 and 8.09 for tri-, 6.65 and 9.11 for tetra-, 6.75 and 9.68 for penta-, 6.44 and 10.24 for hexa-, 7.00 and 10.36 for hepta-, 7.09 and 9.82 octa-, 8.94 and 9.71 for nona-Ct-ABs, and 9.26 and 9.34 for deca-Ct-AB. Because of high log K(OC) values PCt-ABs could be classified as compounds with high affinity to the particles of soil, sediments and organic matter.

摘要

已为 209 种缺乏实验分配数据的环境相关的多氯代偶氮苯(PCAB)计算了土壤吸附系数(K(OC))的值。定量构效关系(QSPR)方法和人工神经网络(ANN)预测能力用于基于几何优化和量子化学结构描述符的模型,这些描述符是在密度泛函理论(DFT)水平上使用 B3LYP 函数和 6-311++G** 基组以及半经验量子化学方法计算的,用于分子轨道包(MOPAC)的属性参数化(PM6)。本研究中,使用了有关 PCDD/Fs 和 PCBs 的物理和化学性质的实验可用数据作为 QSPR 模型和 ANN 预测的参考数据。两种计算方法在绝对 log K(OC)值方面给出了相似的结果,而在 MOPAC 中生成的 PM6 模型与在 GAUSSIAN 中生成的 DFT 模型相比效率更高。log K(OC)的估算值在单氯代、二氯代、三氯代、四氯代、五氯代、六氯代、七氯代、八氯代、九氯代、非九氯代和十氯代之间分别为 4.93 至 5.62、5.27 至 7.46、6.46 至 8.09、6.65 至 9.11、6.75 至 9.68、6.44 至 10.24、7.00 至 10.36、7.09 至 9.82、8.94 至 9.71、8.94 至 9.71、9.26 至 9.34。由于 log K(OC)值较高,PCt-AB 可被归类为对土壤、沉积物和有机物颗粒具有高亲和力的化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验