Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada.
J Neurophysiol. 2012 May;107(10):2672-85. doi: 10.1152/jn.00745.2011. Epub 2012 Feb 8.
A brief synaptic input to the bag cell neurons of Aplysia evokes a lengthy afterdischarge and the secretion of peptide hormones that trigger ovulation. The input transmitter is unknown, although prior work has shown that afterdischarges are prevented by strychnine. Because molluscan excitatory cholinergic synapses are blocked by strychnine, we tested the hypothesis that acetylcholine acts on an ionotropic receptor to initiate the afterdischarge. In cultured bag cell neurons, acetylcholine induced a short burst of action potentials followed by either return to near baseline or, like a true afterdischarge, transition to continuous firing. The current underlying the acetylcholine-induced depolarization was dose dependent, associated with increased membrane conductance, and sensitive to the nicotinic antagonists hexamethonium, mecamylamine, and α-conotoxin ImI. Whereas nicotine, choline, carbachol, and glycine did not mimic acetylcholine, tetramethylammonium did produce a similar current. Consistent with an ionotropic receptor, the response was not altered by intracellular dialysis with the G protein blocker guanosine 5'-(β-thio)diphosphate. Recording from the intact bag cell neuron cluster showed acetylcholine to evoke prominent depolarization, which often led to extended bursting, but only in the presence of the acetylcholinesterase inhibitor neostigmine. Extracellular recording confirmed that exogenous acetylcholine caused genuine afterdischarges, which, as per those generated synaptically, rendered the cluster refractory to further stimulation. Finally, treatment with a combination of mecamylamine and α-conotoxin ImI blocked synaptically induced afterdischarges in the intact bag cell neuron cluster. Acetylcholine appears to elicit the afterdischarge through an ionotropic receptor. This represents an expedient means for transient stimulation to elicit prolonged firing in the absence of ongoing synaptic input.
短暂的突触输入到海兔的袋状细胞神经元会引发长时间的后放电和触发排卵的肽激素分泌。输入递质未知,尽管先前的工作表明后放电可以被士的宁所阻止。因为软体动物兴奋性胆碱能突触被士的宁阻断,我们测试了乙酰胆碱作用于离子型受体以引发后放电的假设。在培养的袋状细胞神经元中,乙酰胆碱诱导短暂的动作电位爆发,随后要么恢复到接近基线,要么像真正的后放电一样,过渡到连续放电。乙酰胆碱诱导的去极化所涉及的电流是剂量依赖性的,与膜电导增加有关,并且对烟碱型拮抗剂六烃季铵、美加明和α-芋螺毒素 ImI 敏感。虽然尼古丁、胆碱、卡巴胆碱和甘氨酸不能模拟乙酰胆碱,但四甲铵确实产生了类似的电流。与离子型受体一致,反应不受细胞内用 G 蛋白阻滞剂鸟苷 5'-(β-硫)二磷酸灌流的影响。从完整的袋状细胞神经元簇记录显示,乙酰胆碱引起明显的去极化,这常常导致延长的爆发,但只有在乙酰胆碱酯酶抑制剂新斯的明存在的情况下。细胞外记录证实外源性乙酰胆碱引起真正的后放电,就像突触引起的后放电一样,使簇对进一步刺激产生不应性。最后,用美加明和α-芋螺毒素 ImI 的混合物处理阻断了完整的袋状细胞神经元簇中突触诱导的后放电。乙酰胆碱似乎通过离子型受体引发后放电。这代表了一种简便的方法,用于在没有持续突触输入的情况下通过短暂刺激引发长时间的放电。