Suppr超能文献

线粒体在非缺血性心肌细胞坏死中起核心作用:常见于急性和慢性应激状态。

Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states.

机构信息

Division of Cardiovascular Diseases, University of Tennessee Health Science Center, 956 Court Ave., Suite A312, Memphis, TN 38163, USA.

出版信息

Pflugers Arch. 2012 Jul;464(1):123-31. doi: 10.1007/s00424-012-1079-x. Epub 2012 Feb 11.

Abstract

The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiological and pathophysiological demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis, which are initiated from ischemic or nonischemic origins. Herein, we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis, which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone-mediated intracellular Ca(2+) overloading, which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis.

摘要

心肌细胞的存活必须得到保证,因为心肌需要适应无数相互竞争的生理和病理生理需求。这些收缩细胞大量丢失,加上它们被纤维组织中的坚硬纤维胶原蛋白取代,导致通常高效的肌肉泵转变为衰竭泵。长期以来,人们一直对导致心肌细胞死亡的细胞和亚细胞机制感兴趣。这包括程序性分子途径,无论是坏死还是细胞凋亡,这些途径都是由缺血或非缺血起源引发的。在这里,我们专注于由线粒体中心信号转导效应器途径在非缺血性心肌细胞坏死中发挥的核心作用,该途径与急性和慢性应激状态都有关。我们首先基于 Albrecht Fleckenstein 和同事大约 40 年前提出的假设,该假设基于钙调节激素介导的细胞内 Ca(2+)超载的重要性,这种超载主要涉及到肌小节下的线粒体,是通路激活的信号。随后几年中被识别出的其他通路成分包括氧化应激的诱导和线粒体内膜通透性转换孔的开放。随之而来的心肌细胞丢失和随后的替代纤维化或瘢痕形成,代表了一种适应性疾病,是内稳态导致失调的经典范例。

相似文献

1
Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states.
Pflugers Arch. 2012 Jul;464(1):123-31. doi: 10.1007/s00424-012-1079-x. Epub 2012 Feb 11.
2
Disturbances in calcium metabolism and cardiomyocyte necrosis: the role of calcitropic hormones.
Prog Cardiovasc Dis. 2012 Jul-Aug;55(1):77-86. doi: 10.1016/j.pcad.2012.02.004.
3
Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited.
Eur Heart J. 2011 Aug;32(15):1846-53. doi: 10.1093/eurheartj/ehr063. Epub 2011 Mar 12.
5
Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms.
Am J Med Sci. 2011 Aug;342(2):129-34. doi: 10.1097/MAJ.0b013e3182231ee3.
6
Cellular and molecular pathways to myocardial necrosis and replacement fibrosis.
Heart Fail Rev. 2011 Jan;16(1):23-34. doi: 10.1007/s10741-010-9169-3.
7
Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism.
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H385-94. doi: 10.1152/ajpheart.00593.2009. Epub 2009 Nov 13.
8
Mitochondria-targeted cardioprotection in aldosteronism.
J Cardiovasc Pharmacol. 2011 Jan;57(1):37-43. doi: 10.1097/FJC.0b013e3181fe1250.
9
Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state.
Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H636-44. doi: 10.1152/ajpheart.00900.2010. Epub 2010 Nov 12.
10
Reverse remodeling and recovery from cachexia in rats with aldosteronism.
Am J Physiol Heart Circ Physiol. 2012 Aug 15;303(4):H486-95. doi: 10.1152/ajpheart.00192.2012. Epub 2012 Jun 22.

引用本文的文献

1
Pheochromocytoma/paraganglioma-associated cardiomyopathy.
Front Endocrinol (Lausanne). 2023 Jul 13;14:1204851. doi: 10.3389/fendo.2023.1204851. eCollection 2023.
2
TCA cycle metabolites associated with adverse outcomes after acute coronary syndrome: mediating effect of renal function.
Front Cardiovasc Med. 2023 Jun 27;10:1157325. doi: 10.3389/fcvm.2023.1157325. eCollection 2023.
3
Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage After Ischemic Stroke in Diabetic State.
Front Immunol. 2021 Aug 27;12:737170. doi: 10.3389/fimmu.2021.737170. eCollection 2021.
4
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis.
Oxid Med Cell Longev. 2020 Jan 23;2020:4105382. doi: 10.1155/2020/4105382. eCollection 2020.
5
Catecholamine-Induced Cardiomyopathy in Pheochromocytoma: How to Manage a Rare Complication in a Rare Disease?
Horm Metab Res. 2019 Jul;51(7):458-469. doi: 10.1055/a-0669-9556. Epub 2018 Sep 18.
6
The direct modulatory activity of zinc toward ion channels.
Integr Med Res. 2015 Sep;4(3):142-146. doi: 10.1016/j.imr.2015.07.004. Epub 2015 Jul 15.
8
The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling.
Korean J Physiol Pharmacol. 2015 Sep;19(5):389-99. doi: 10.4196/kjpp.2015.19.5.389. Epub 2015 Aug 20.
9
Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria.
Cardiovasc Res. 2015 May 1;106(2):227-36. doi: 10.1093/cvr/cvv044. Epub 2015 Feb 18.
10
Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure.
Clin Res Cardiol. 2014 Nov;103(11):938-49. doi: 10.1007/s00392-014-0735-x. Epub 2014 Jun 8.

本文引用的文献

1
Cell death signalling mechanisms in heart failure.
Exp Clin Cardiol. 2011 Winter;16(4):102-8.
2
New roles for mitochondria in cell death in the reperfused myocardium.
Cardiovasc Res. 2012 May 1;94(2):190-6. doi: 10.1093/cvr/cvr312. Epub 2011 Nov 22.
3
Role of stem cells in cardiovascular biology.
J Thromb Haemost. 2011 Jul;9 Suppl 1(0 1):151-61. doi: 10.1111/j.1538-7836.2011.04363.x.
4
Mechanisms and inhibitors of apoptosis in cardiovascular diseases.
Curr Pharm Des. 2011;17(18):1783-93. doi: 10.2174/138161211796390994.
6
Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond.
Basic Res Cardiol. 2011 Sep;106(5):709-33. doi: 10.1007/s00395-011-0183-y. Epub 2011 May 4.
7
Multiple facets of NF-κB in the heart: to be or not to NF-κB.
Circ Res. 2011 Apr 29;108(9):1122-32. doi: 10.1161/CIRCRESAHA.110.226928.
8
Programmed necrosis, not apoptosis, in the heart.
Circ Res. 2011 Apr 15;108(8):1017-36. doi: 10.1161/CIRCRESAHA.110.225730.
9
Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells.
Circ Res. 2011 May 13;108(10):1226-37. doi: 10.1161/CIRCRESAHA.110.239046. Epub 2011 Mar 31.
10
Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state.
Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H636-44. doi: 10.1152/ajpheart.00900.2010. Epub 2010 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验