AbouAlaiwi Wissam A, Rodriguez Ingrid, Nauli Surya M
Department of Pharmacology, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Ohio, USA.
J Vis Exp. 2012 Feb 3(60):3887. doi: 10.3791/3887.
Conventional method to identify and classify individual chromosomes depends on the unique banding pattern of each chromosome in a specific species being analyzed (1, 2). This classical banding technique, however, is not reliable in identifying complex chromosomal aberrations such as those associated with cancer. To overcome the limitations of the banding technique, Spectral Karyotyping (SKY) is introduced to provide much reliable information on chromosome abnormalities. SKY is a multicolor fluorescence in-situ hybridization (FISH) technique to detect metaphase chromosomes with spectral microscope (3, 4). SKY has been proven to be a valuable tool for the cytogenetic analysis of a broad range of chromosome abnormalities associated with a large number of genetic diseases and malignancies (5, 6). SKY involves the use of multicolor fluorescently-labelled DNA probes prepared from the degenerate oligonucleotide primers by PCR. Thus, every chromosome has a unique spectral color after in-situ hybridization with probes, which are differentially labelled with a mixture of fluorescent dyes (Rhodamine, Texas Red, Cy5, FITC and Cy5.5). The probes used for SKY consist of up to 55 chromosome specific probes (7-10). The procedure for SKY involves several steps (Figure 1). SKY requires the availability of cells with high mitotic index from normal or diseased tissue or blood. The chromosomes of a single cell from either a freshly isolated primary cell or a cell line are spread on a glass slide. This chromosome spread is labeled with a different combination of fluorescent dyes specific for each chromosome. For probe detection and image acquisition,the spectral imaging system consists of sagnac interferometer and a CCD camera. This allows measurement of the visible light spectrum emitted from the sample and to acquire a spectral image from individual chromosomes. HiSKY, the software used to analyze the results of the captured images, provides an easy identification of chromosome anomalies. The end result is a metaphase and a karyotype classification image, in which each pair of chromosomes has a distinct color (Figure 2). This allows easy identification of chromosome identities and translocations. For more details, please visit Applied Spectral Imaging website (http://www.spectral-imaging.com/). SKY was recently used for an identification of chromosome segregation defects and chromosome abnormalities in humans and mice with Autosomal Dominant Polycystic Kidney Disease (ADPKD), a genetic disease characterized by dysfunction in primary cilia (11-13). Using this technique, we demonstrated the presence of abnormal chromosome segregation and chromosomal defects in ADPKD patients and mouse models (14). Further analyses using SKY not only allowed us to identify chromosomal number and identity, but also to accurately detect very complex chromosomal aberrations such as chromosome deletions and translocations (Figure 2).
识别和分类单个染色体的传统方法依赖于被分析的特定物种中每条染色体独特的带型模式(1,2)。然而,这种经典的带型技术在识别复杂的染色体畸变(如与癌症相关的畸变)时并不可靠。为了克服带型技术的局限性,引入了光谱核型分析(SKY)来提供关于染色体异常的更可靠信息。SKY是一种多色荧光原位杂交(FISH)技术,用于用光谱显微镜检测中期染色体(3,4)。SKY已被证明是一种有价值的工具,可用于对与大量遗传疾病和恶性肿瘤相关的广泛染色体异常进行细胞遗传学分析(5,6)。SKY涉及使用通过PCR从简并寡核苷酸引物制备的多色荧光标记DNA探针。因此,在与用荧光染料混合物(罗丹明、德克萨斯红、Cy5、FITC和Cy5.5)进行差异标记的探针进行原位杂交后,每条染色体都有独特的光谱颜色。用于SKY的探针由多达55种染色体特异性探针组成(7 - 10)。SKY的操作过程包括几个步骤(图1)。SKY需要从正常或患病组织或血液中获得具有高有丝分裂指数的细胞。来自新鲜分离的原代细胞或细胞系的单个细胞的染色体铺展在载玻片上。这种染色体铺展用针对每条染色体的不同荧光染料组合进行标记。对于探针检测和图像采集,光谱成像系统由萨尼亚克干涉仪和电荷耦合器件(CCD)相机组成。这允许测量从样品发出的可见光谱并从单个染色体获取光谱图像。HiSKY是用于分析所捕获图像结果的软件,它能轻松识别染色体异常。最终结果是一个中期和核型分类图像,其中每对染色体都有独特的颜色(图2)。这使得能够轻松识别染色体身份和易位。如需更多详细信息,请访问应用光谱成像网站(http://www.spectral-imaging.com/)。SKY最近被用于识别患有常染色体显性多囊肾病(ADPKD)的人类和小鼠中的染色体分离缺陷和染色体异常,ADPKD是一种以初级纤毛功能障碍为特征的遗传疾病(11 - 13)。使用这项技术,我们证明了ADPKD患者和小鼠模型中存在异常的染色体分离和染色体缺陷(14)。使用SKY进行的进一步分析不仅使我们能够识别染色体数量和身份,还能准确检测非常复杂的染色体畸变,如染色体缺失和易位(图2)。